
Appendix 3B 
MATLAB Functions for Modeling and Time-domain analysis 

 
MATLAB control system Toolbox contain the following functions for the time-domain 
response 
 

step  Step response. 
    impulse Impulse response. 
     initial  Response of state-space system with given initial state. 
     lsim  Response to arbitrary inputs. 
     gensig  Generate input signal for LSIM. 
     damp  Natural frequency and damping of system poles. 
     ltiview  Response analysis GUI (LTI Viewer). 
 
Given a transfer function of a closed-loop control system, the function step(num, den) 
produces the step response plot with the time vector automatically determined. If the 
closed-loop system is defined in state space, we use step(A, B, C, D), step(A, B, C, D, t) 
or step(A, B, C, D, iu, t) uses the supplied time vector t. The scalar iu specifies which 
input is to be used for the step response. If the above commands are invoked with the left-
hand argument [x, y, t], the output vector y, the state response x, and the time vector t are 
returned, and we need to use plot function to obtain the plot. Similarly for impulse, 
initial, and lsim.  
 
 
Example B.1 
 
Obtain the unit step response for the system with the following closed-loop transfer 
function 
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Use the damp function to obtain the roots of the characteristic equation, the 
corresponding damping function, and natural frequencies 
 
The following commands 
  

num=25*[0.4  1];             
den = conv([1  0.16], [1   6   25]);    % multiplies the two polynomials 
step(num, den), grid                          % obtains the step response plot 
T = tf(num, den) 
damp(T)                                            % returns roots of C.E., damping ratio, wn 
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Figure B.1 Step response of Example 1 

 
 Eigenvalue              Damping      Freq. (rad/s)                                                          
 -3.00e+000 + 4.00e+000i      6.00e-001       5.00e+000     
 -3.00e+000 - 4.00e+000i    6.00e-001       5.00e+000     
 -6.25e+000                   1.00e+000       6.25e+000     

 
Example B.2 
 
The closed-loop transfer function of a control system is described by the following third-
order transfer function 
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(a) Find the dominant poles of the system 
(b) Find a reduced-order model  
(c) Obtain the step response of the third-order system and the reduced-order system on 
     the same figure plot 
 
(a)  The command 
 
 den = [ 1  36  205  750]; 
 r = roots(den) 
result in 
 r =  
                  -30 
       -3  + 4i 
       -3  -  4i 
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Therefore the transfer function is 
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The time constant of the real pole at 30s = − is 1 1/ 30τ =  which is negligible compared to 
the time constant of 2 1/ 3τ =  for the dominant poles 3 4j− ± . Therefore the approximate 
reduced model transfer function is 
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We use the following commands 
 
 num1 = 750;                    % third-order system num           

den1 = [1  36   205   750];    % third-order system den 
num2=25;                       % reduced-order system num           
den2 = [1  6  25];            % reduced-order system den 
t = 0: 0.01: 2;                
c1 = step(num1, den1, t);      % third-order system step response 
c2 = step(num2, den2, t);      % reduced-order system step response 
plot(t, c1, 'b', t, c2, 'r')   % plots both response on the same figure 
grid, xlabel('t, seconds'), ylabel('c(t)') 
legend('Third-order', 'Reduced-order') 

 

 
Figure B.2 Third-order and reduced-order Step response step responses of 

Example 1 
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The LTI Viewer 

The Control System Toolbox LTI Viewer is a GUI that simplifies the analysis of linear, 
time-invariant systems. You use the LTI Viewer to view and compare the response plots 
of several linear models at the same time. You can generate time and frequency response 
plots to inspect key response parameters, such as rise time, maximum overshoot, and 
stability margins. Using mouse-driven interactions, you can select input and output 
channels from MIMO systems. The LTI Viewer can display up to six different plot types 
simultaneously, including step, impulse, Bode (magnitude and phase or magnitude only), 
Nyquist, Nichols, sigma, and pole/zero.  

The command syntax is 
 
 ltiview(‘plot type’, sys, extra) 
 
where sys is the transfer function name and ‘plot type’ is one of the following responses: 
 
 step  bode 
 impulse nyquist 
 initial  nichols 
 lsim  sigma 
 
Extra is an optional argument specifying the final time. Once an LTI Viewer is opened, 
the right-click on the mouse allows you to change the response type and obtain the 
system time-domain and frequency domain specifications, including:  
 

Plot Type  changes the plot type 
Systems selects any of the models loaded in the LTI Viewer 
Characteristics displays key response characteristics and parameters 
Zoom   zooms in and out of plot regions 
Grid   adds grids to your plots 
Properties  Property Editor, where you can customize plot attributes 

 
Example B.3 
 
Use the  ltiview to obtain the step response and the time-domain specifications for the 
control system shown in Figure 3. 
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Figure B.3 Block diagram for Example 3 
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The following commands 
 

Gc = tf([50  70], [1  7])   % transfer function Gc 
Gp = tf([1], [1 5 4 0]);        % transfer function Gp 
H = 1;                       
G = series(Gc, Gp)              % connects Gc & Gp in cascade 
T = feedback(G, 1)              % obtains the closed loop transfer function 
ltiview('step', T) 

 
result in 
 
Transfer function: 

              50 s + 70 
--------------------------------- 
s^4 + 12 s^3 + 39 s^2 + 78 s + 70  

 
The system step response is obtained as shown in Figure 4. The mouse right-click is used 
to obtain the time-domain specifications. From File menu you can select Print to Figure 
option to obtain a Figure Window for the LTI Viewer for editing the graph.  

 
Figure B.4  Step response of Example B.3 

 
For the time-domain analysis it is recommended to use the LTI Viewer, this will make it 
possible to obtain the time-domain specification with a simple right-click on the mouse. 
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In addition it allows you to select the Plot type, which would enable you to find other 
type of time-domain responses as well as the frequency domain responses and 
specifications.  
 
MATLAB Functions for Numerical Solution of Differential Equations 
 
There are many other more powerful techniques for the numerical solution of nonlinear 
equations.  A popular technique is the Runge-Kutta method, which is based on formulas 
derived by using an approximation to replace the truncated Taylor series expansion. The 
interested reader should refer to textbooks on numerical techniques. MATLAB provides 
several powerful functions for the numerical solution of differential equations.  Two of 
the functions employing the Runge-Kutta-Fehlberg methods are ode23 and ode45, based 
on the Fehlberg second- and third-order pair of formulas for medium accuracy and forth- 
and fifth-order pair for higher accuracy.  These functions are as follows: 
 
ode23  Solve non-stiff differential equations, low order method. 
ode45  Solve non-stiff differential equations, medium order method 
ode113 Solve non-stiff differential equations, variable order method. 
ode15S Solve stiff differential equations and DAEs, variable order method. 
ode23S Solve stiff differential equations, low order method. 
ode23T Solve moderately stiff ODEs and DAEs, trapezoidal rule. 
ode23TB Solve stiff differential equations, low order method. 
 
The nth-order differential equation must be transformed into n first order differential 
equations and must be placed in an M-file that returns the state derivative of the 
equations. The formats for these functions are  
 

 [t, x] = ode23('xprime', tspan, x0, option) 
 
where tspan =[t0, tfinal] is the time interval for the integration and  x0 is a column 
vector of initial conditions at time t0. xprime is the state derivative of the equations, 
defined in a file named xprime.m. Commonly used options are scalar relative error 
tolerance 'RelTol' (1e-3 by default) and vector of absolute error tolerances 'AbsTol' (all 
components 1e-6 by default) 
 
 
Example B.4 
 
Using MATLAB function ode23 obtain the numerical solution for the differential 
equation given by 
 

2

2 sin 0d B d g
dt m dt l
θ θ θ+ + =        
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The above equation describes the motion of the simple pendulum derived in Lab Session 
4 Case Study2. Where Kg, 0.5m = 0.613l = m, 0.05B =  Kg-s/m, and  . 
The initial angle at time  is 

9.81g = 2m/s
0t = (0) 0.5θ = and (0) 0θ = . 

 
First we write the above equation in state variable form. Let 1x θ= , and 2  x θ= (angular 
velocity), then  

1 2

2 2 sinx  

x x
B gx x
m l

=

= − − 1

         

 
The above equations are defined in a function file named pendulumeq.m as follows 
 
 function xdot = pendulumeq(t, x);  % Returns the state derivative  

m = 0.5; l = 0.613; B = 0.05; g = 9.81; 
xdot = [x(2); -B/m*x(2)-g/l*sin(x(1))]; 

 
In a separate file named Lab3ExB4.m, the MATLAB function ode23 is used to obtain the 
solution of the given differential equations (defined in the file pendulumeq.m from 0 to 
20 seconds. 
 

tspan = [0, 20];       % time interval 
x0 = [0.5; 0];          % initial condition 
[t, x] = ode23('pendulumeq', tspan, x0);  
theta = x(:, 1);omega = x(:, 2);  
figure(1), plot(t, theta, 'b', t, omega, 'r'), grid 
xlabel('t, sec'), legend('\theta(t)', '\omega(t)') 
figure(2), plot(theta, omega);  
xlabel('\theta, rad'), ylabel('\omega rad/s') 
title('State trajectory') 

 
Run Lab3ExB4 at the MATLAB prompt, the result is 

 
Figure B.5 Response of the pendulum described in Example B.4 
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Example B.5  
 
Using MATLAB function ode23 obtain the numerical solution for the nonlinear 
simultaneous differential equation given by 
 

1 2
1 2

1 2
1 2

2 [20 40*cos(0.02* )] 30*sin(0.02* ) 13*exp(- )*sin( )

3 4 [20*sin(0.02* )] [10 40*cos(0.02* ) 40*exp( 0.2 )*cos( )

dx dxx x t t t t
dt dt

dx dxx x t t t
dt dt

− + + − + =

− + + − = −

1(0) 1x = 2 (0) 1x = −

t

t

Given , and  
 
Writing the above equations in matrix form, we have 
 

1 1
0.2

2 2

1 2 20 40cos 0.02 30sin 0.02 13 sin
3 4 20sin 0.02 10 40cos 0.02 40 cos

t

t

x xt t e
x xt t e t

−

−

 − −      
+ =        − −         

 

Writing in compact form 
RX LX V+ =  

Solving for X , we get 
1[ ]X L V RX−= −    (Note the correction) 

The above equations are defined in a function file named nlseq.m as follows 
 
function xdot = nlseq(t, x);       % Returns the state derivative  
R = [-1  2; 3  -4]; L = [20-40*cos(0.02*t)        30*sin(0.02*t)   
                                  20*sin(0.02*t)        10-40*cos(0.02*t)]; 
V = [13*exp(-t)*sin(t);  40* exp(-0.2*t) *cos(t)];   
xdot = inv(L)*(V - R*x); 
 
In a separate file named Lab3ExB5.m, the MATLAB function ode23 is used to obtain the 
solution of the given differential equations (defined in the nlseq.m from 0 to 30 seconds 
 
tspan = [0, 30];   % time interval 
x0 = [1; -1];      % initial condition 
[t, x] = ode23('nlseq', tspan, x0);  
plot(t, x), grid 
xlabel('t, sec'), legend('x_1(t)', 'x_2(t)') 
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Figure B.6 Response of the system described in Example B.5 
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