Signals and Systems
Introduction

This course is about signals and their processing by
systems. It involve

e Modeling of signals by mathematical functions
e Modeling of systems by mathematical equations

e Solution of the equations when excited by the
functions



What are Signals?

A Signal is something that represent information. Our
world is full of signals, both natural and man-made.
Examples are:

e Variation in air pressure when we speak
e \oltage waveform in a circuit

e The periodic electrical signals (EKG) generated
by the heart

e Stock prices of Intel

e No. of yawns in EE-303 through the quarter



What are systems?
A system is a generator of signals or it is a transformer

of signals

4 ]
y(t) ' ¥y
B W )

System as transformer

System as Generator

= Bt
Doty Jomes Industrial Average
At P"' 11,025
L. |
] 11,000
¥ w,
!Iﬂ-” 10,975
11 1 3
+ OJIA 11,0087 +12.454
4+ NASDAD 342050 +77.63
& SEP SO0 141708 +13.44 )

r\-‘i Student
Grades Voltage | Electric | Current
Professor's effort EE-303 Circuit >
Professor's.( 2

‘ . ' . ' /@\ Evaluationd;b

Student effort




What is Signal Processing?

Signal processing involves enhancing, extracting, stor-
ing and transmitting useful information. Electrical sig-
nals are best suited for such manipulations. It is com-
mon to convert signals to electrical form for process-
ing. Two conceptual schemes for signal processing
are shown below.
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Why study Signals and Systems?

(What is the point of EE-3037?)

Signals and systems are fundamental to all of engi-
neering! Steps involved in engineering are:

e Model system: Involves writing a mathematical
description of input and output signals

e Analyze system: Study of the various signals as-
sociated with the system

e Design system: Requires deciding on a suitable
system architecture, as well as finding suitable
system parameters

e Implement system/test system: Check system,
and the input and output signals, to see that the
performance is satisfactory.



Signal Types

The value of a signal, at any instant, corresponds to its
(instantaneous) amplitude. Time may assume a con-
tinuum of value t, or discrete values, nts, where ts is a
sampling interval, and n is an integer. The amplitude
may also assume a continuum of values or be quan-
tized to a finite number or discrete levels between ex-
tremes. This results in four kinds of signals:



Continuous-time Signal (CT) Analog

It is a function of a continuous-time variable. The
air pressure variation caused by the vibration of the
speaker diaphragm is an analog signal because the
pressure variation is a continuous function of time.

Example 1.1
let z(t) = 1+ e 2tsin(2xt). In MATLAB we use the
following commands to plot this signal.



%chsl _exl.m

t=0:0.001:1; % CT index(0, 1)
x = 1+ exp(-2%t) .*sin(2*pix*t); %function x(t)
plot(t,x, ’r’) % CT plot

xlabel(’t’),ylabel (’x(t)’),title(’CT signal’)
The graph of this CT signal is

CT signal
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Note that the signal may not be continuous in ampli-
tude.



Discrete-time Signal (DT) Sampled

A discrete signal is defined at only certain instants of
time. Between these discrete-time instants the value
of the signal may be zero, or undefined. A discrete-
time signal is an ordered sequence of numbers. The
sampling intervals are usually the same.

Example 1.2
For z[nts] = 1 + e 2™ssin(2wnts), we use the
stem command to plot the DT signal.



%chsl _ex2.m
t_s =0.1;

/» Sampling interval
nt_s=(0:1:10)*t_s;%DT (0.1 sampling interval)
x = 1+ exp(-2*nt_s) .*sin(2*pi*nt_s);
stem(nt_s, x),

% Sampled signal
xlabel(’nt_s’),ylabel(’x[nt_s]’),

title(’DT signal’)

The graph of this DT signal is

DT signal
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Quantized Signal
In quantize signal the amplitude assumes a contin-
uum of values at continuous time intervals.

Example 1.3

For z(t) = 1 + e ?!sin(2xt), we use the stairs
command to plot the quantize signal.

nt_s=0:0.1:1; %(chsl_ex3.m) % QT

x = 1+ exp(-2*nt_s) .*sin(2*pi*nt_s);
stairs(t, x, ’r’) % Quantized signal
xlabel(’t’),ylabel (’x_Q(t)’)
title(’Quantized signal’)

The graph of this quantize signal is

Quantized signal
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Digital signal

In a digital signal the amplitude is quantized to a finite
number of discrete levels between its extremes.
Example 1.4

For z[nts] = 1 + e 2"tssin(2nnts), we can use
stem and stairs command.

%chl_ex4.m

t_s = 0.1; nt_s=(0:1:10)*t_s; % Sampling time
x = 1+ exp(-2*nt_s) .*sin(2*pi*nt_s);

stem(t, x, ’r’), hold

stairs(t, x,’--r’), hold off

xlabel(’ [nt_s]’), ylabel(’x_Q[nt_s]’)
title(’Digital signal’)
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Even and Odd Signals

A signal z(t) is even if x(—t) = z(¢) for all ¢t. signal

fort < O and signal for ¢ > 0 are symmetric about the
vertical axis passing through the origin at ¢t = 0. i.e.,
they are mirror image of each other.

A signal xz(t) is odd if z(—t) = —x(¢) for all ¢. signal
for t < O and signal for ¢ > 0 are asymmetric about
the origin.
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Any signal can be written as a sum of its even and odd
parts, i.e.

x(t) = ze(t) + zo(t)

where

re(t) = xe(—t)
and

xo(t) — _xo(_t)
Replacing ¢ for —t in z(t), we have

x(—t) = xe(—1t) + 2o(—1)
or

x(—t) = xe(t) — zo(t)

Solving for x¢(¢) and z,(t), we obtain

re(t) = - [o(t) + 2(~1)]
and
rot) =  [2(t) — (~1)]
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Example 1.5
Given z(t) = eIl sin(¢+2), Use MATLARB to obtain
the even and odd parts of x(t).

%chsl_ex5.m
t=-6:.005:6;
x1 = exp(-abs(t)) .*sin(t+2);
subplot(1,2,1), plot( t, x1)
legend(’original signal’,2)
title(’x(t) = exp(-ltl)sin(t+2)’)
x2 = exp(-abs(-t)) .*sin(-t+2);
xe = 0.5%x(x1+x2); x0 = 0.5%(x1-x2);
subplot(1,2,2), plot(t, xe, ’r’, t, xo, ’m’)
legend(’even component’, ’odd component’,2)
X(t) = exp(=It)sin(t+2)
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Example 1.6 (chs1_ex6.m)
Find the even and the odd parts of the signal x(¢)
shown below. The signal 0.5x(t), and 0.5x(—t) are
drawn as shown. The even part given by z.(t) =
0.5[z(t)4+xz(—t)], and the odd part given by x,(t) =
0.5[x(t) — z(—t)] are as shown.
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Even and odd functions have the following properties:

The sum of two even functions is even.
The sum of two odd functions is odd.

The sum of an even function and an odd function
IS neither even or odd

The product of two even functions is even.

The product of two odd functions is even. The
product of an even function and an odd function
IS odd.

17



Periodic and nonperiodic signals
A continuous-time signal is periodic if and only if

x(t+T)=x(t) forallt

where T' = Ty, 210,31y, . ... Tp which is the dura-
tion of one complete cycle is called the fundamental
period. The number of cycle per second or frequency

IS then

1
= — Hz
/ T

or the angular frequency is

w=2nf rad/s

Any other signal not satisfying the above condition is
called aperiodic signal. A sine wave is an example of
a periodic function. Consider the sine wave

x(t) = sin(wt + 0)

Example 1.7
Use MATLAB to plot x(t), if w = 200« rad/s, and
0 = & rad. The period is T' = 200—7’ — Qggﬂ — 0.01 s.
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We use the following command
%ichsl_ex7.m

w_0 = 200%pi;

theta = pi/6;
T = 2%pi/w_0O; % period
t =

X

-2xT:T/100:2%T; % time range —-2T to 2T
= sin(w_0*t + theta);

plot(t, x), grid

xlabel(’t’), ylabel(’x(t)’)
title(Px(t)

sin(w_0Ot + theta)’)
axis([-.025 0.025 -1 1])
The result is

x(t) = sin(wot + theta)
0.5—/ R RET\ SEEEEEEY FE) PRRRRR |

-0.02 -0.01

0 0.01 0.02
1, sec

19



The signal processing toolbox has many function for
plotting other periodic signals such as square and saw-
tooth. square(wt ) generates a square wave with peaks
of +1 to —1, and period 7. square(wt , Duty) gen-
erates a square wave with the duty cycle. Duty is a
constant between O and 1, specifying the fraction of
each period for which the signal is positive. The com-
mand sawtooth(wt) and sawtooth(wt , WIDTH) gen-
erates a sawtooth wave. WIDTH is a scaler parameter
between 0 and 1 which specifies the fraction between
O and 27 at which the maximum occurs.
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Example 1.8

Use MATLAB to generate a square wave of frequency
f = 60 Hz, and a sawtooth wave of frequency wg =
1007 rad/s. We use the following commands

%chsl _ex8.m

T = 1/60; % period sec.

t = -2xT:T/100:2x%T; 7 time range
x1 = square(2*xpi*60%*t) ;
subplot(1,2,1), plot(t, x1, ’r’)
w_0 = 100*pi; T = 2*pi/w_0;

x2 = sawtooth(w_0*t);

t = -2xT:T/100:2%T;

subplot(1,2, 2), plot(t, x2, ’m’)
subplot(111)

The result is as shown.
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The sum of two or more continuous-time periodic waves
is periodic if the ratio of each pair of individual fre-
guencies is a rational fraction, i.e., their frequencies
are commensurable.

A discrete-time signal is periodic if and only if

x[n + N] = z[n] for all integers n
where N = Ng,2Ng, 3Ng, . ... The integer Ny is the
fundamental period, with the angular frequency
2T

Q2 = — rad/s
No
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Operation on Signals

Typical operations on signals are three transforma-
tions in time domain and three transformation in am-
plitude. These transformations are especially useful
iIn Fourier series applications.

Time Shift

If x(¢) is a continuous function, the time-shifted signal
is defined as y(t) = x(t —tg). If tg > 0, the signal is
shifted to the right, and if ¢5 < 0, the signal is shifted
to the left.

Example 1.9 (chs1_ex9.m)

Consider z(t) = te2ltl, we wish to plot the time-
shifted signal y1(t) = (t — 2)e2lt=2l, and y>(¢) =
(t + 1)e2lt+1],

We use the following commands
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hchsl_ex9.m

t=-6:.001:6;

x =t.*xexp(-2*abs(t));

yl = (£-2).*%exp(-2*abs(t-2));

y2 = (t+1).*exp(-2*abs(t+1));

subplot(1,3,1), plot(t, x, ’b’), grid
title(x(t) = te”{-2|tl}’),xlabel(’t’)
subplot(1,3,2), plot(t, y1,’r’), grid
title(Cy_1(t) = (t-2)e"{-2|t-2]}’) ,xlabel(’t’)
subplot(1,3,3), plot(t, y2, ’m’), grid
title(CPy_2(t) = (t+1)e”{-2|t+1]}’) ,xlabel(’t’)

x(t) = te™" y, (1) = (t-2)e>"? Y, = (t+1)e72"
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0.1 0.1 : 0.1
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0 0 0
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Time Reversal

If z(t) is a continuous function, the time-reversed sig-
nal is defined as y(t) = z(—1t).

Recall that an even signal is the same as its reflected
version, i.e., z(—t) = xz(¢) and an odd signal is the
negative of its reflected version, i.e., z(—t) = —x(t).

Example 1.10 (chs1_ex10.m)
Consider z(t) = e~!sin 2t, This signal and its time-
reversed x(—t) is as shown.

x(t) = e"'sin(2t) x(-t) = e'sin(=2t)

0.6

0.5¢

0.4r¢
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Time Scaling
If z(¢) is a continuous function, a time-scale version
of this signal is defined as y(t) = z(at).

If a > 1, the signal y(t) is a compressed version of
z(t), i.e., the time interval is compressed to <.

If 0 < a < 1, the signal y(t) is a stretched version of
x(t), i.e., the time interval is stretched by %

Example 1.11 (chs1_ex11.m)

Consider z(t) = sin? ¢, This signal and its time-scaled
y(t) = sin? 2t, and sin? 5t over one-half period is as
shown.

x(t) = sin?(t) y(t) = sin?(2t) y(t) = sin?(0.5t)

1 : : : 1 : : : 1 : : :
0.8} { o8}
0.6} { 06}
0.4r 1 0.4}
0.2} { 02}

0 : 0

0o 2 4 6 0 2 4 6
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Composite Time transformation

If (¢) is a continuous signal, the scale and shifting
transformation of the signal is given by y(¢t) = x(at+
to), if a < 0, the signal will go through a reversal as
well. The general method to obtain a time transforma-
tion is as follows:

1. Given x(t), replace t with 7
2. Given the transformation = = at + tq, solve for ¢
3. Draw the t-axis directly below the r-axis

4. Plot y(t) on the t-axis
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Amplitude Transformation

The transformation in signal amplitude involves
Amplitude scaling

If x(¢) is a continuous signal, the amplitude transfor-
mation of this signal is

y(t) = az(t)
Addition

If x1(¢), and z>(t) are two continuous signals, the
addition of the signals is

y(t) = z1(t) + z2(t)

Multiplication
If x1(¢), and z>(t) are two continuous signals, the
product of the signal is

y(t) = z1(t)z2(1)

We have similar time and amplitude transformations
for discrete time signals.
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Sinusoidal Signals

The sinusoidal signal is of major importance since if
we know the response of a system to sinusoids of all
frequencies, we have a complete description of the
system. The continuous-time version of this signal is
written as

x(t) = Acos(wgt + 0)

where A is the amplitude, wq is the frequency in radi-
ans per second, and 6 is the phase angle in radians.
The period of the signal is T" = i—g. The manipula-
tion and analysis of sinusoidal signals is simplified by
dealing with their amplitude and phase angles or their
phasor representation.

From Euler’s identity, the complex exponential func-
tion is expressed as

e/® = cosB+ jsinB or

cosB = Re!’ and sinB = el
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Thus the sinusoidal signal x(¢) may be written as
z(t) = R{Ae/ DY = R{Aellei'} = R{X e/}

Note that Ae’? indicates the magnitude and phase
angle of the sinusoidal signal x(¢). This complex num-
ber is called phasor and is shown by X = AelY, or
X = A/6. We say that we transform a sinusoidal
signal from time domain into phasor domain, and we
write

P{Acos(wot + 0)} = Ael?
A/0

We define the complex signal as
7(t) = Ael(wott0) — ¥ ojwot

Xisa rotating vector or a phasor whose real part gen-
erates the cosine signal xz(¢). Rewriting the complex
signal z(¢) and its conjugate as
7(t) = At = Alcos(wot + 0) + jsin(wot + 6)]
() = Ae7Wtt0) = Alcos(wot + 6) — jsin(wot + )]
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We conclude that the cosine signal x(t) can be ex-
pressed as one-half of the sum of the complex sig-
nal Z(t) with positive frequency wg and its conjugate
7*(t), with negative frequency —wq, i.e.,

o(t) = - () + (1)

Therefore, the oppositely rotating phasors %ff = %AZ@
and 5X* = 1A/ will generate the cosine signal
x(t). The script file rotphasor illustrates how the real
part of a rotating phasor generates a cosine signal,
and the file rot2phasor demonstrates how the sum of
two half-amplitude oppositely rotating phasors gener-
ates the cosine signal. To see a demonstration type
rotphasor, and rot2phasor at the MATLAB prompt.

x(t) = A cos(a) x(t) = A cos(wt)

SV IV

Real[A £6] 12A 20+ 1/2A /-0
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Frequency Domain Spectra
An alternative way to visualize the sinusoidal signal
x2(t) in the frequency domain is in the form of two
plots. One the amplitude A as the function of fre-
quency f, and the other its phase angle 6 as a func-
tion of f. These plots are referred to as single-sided
spectrum. If the amplitude and phase angle plots are
made for the oppositely rotating phasors we obtain the
so called double-sided spectra as shown.

Amplitude Amplitude

A____
-
0 fo f —fo 0 fo f
G_szis_e _t, Q_P_has_eT
L————O_e fo  f
0 fo f

(a) Single-sided spectrum  (b) Double-sided spectra

Note that if a signal is represented as a sine function, before find-
ing the signal spectra it must be expressed in terms of a cosine

function, sin(wot + ) = cos(wot + 0 — 5)-
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Example 1.12
For the signal

2(t) = 6 cos(10mt + g) + 4sin(18nt + g)

(a) Find the period and the fundamental frequency of
the signal.

(b) Write the signal as the real part of the sum of the
rotating phasors.

(c) Write z(t) as the sum of counter rotating phasors.
(d) plot the single-sided amplitude and phase spectra.
(e) plot the 2-sided amplitude and phase spectra.

(a) Converting the second term to a cosine function,
we have

x(t) = 6cos(10nt + g) + 4 cos(18nt — g)

We have 10m = 27m fg and 18w = 27wn fg, where,
m, and n are integers and fj is the largest constant
that satisfies these equations. Therefore,

107 187 5 O
fo p— p— = —_— = —
2mTm 2m™n m n
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or
n=1.8m

form =5 n =29, therefore

10
o=@ =

(b) x(¢) in terms of the real part of the rotating pha-
SOrs is

z(t) =R [6ej(1077t+%)] + R [4ej(1877t_%)]

1, and 1p = 1.0s

(c) z(t) in terms of the of counter rotating phasors is
x(t) = [3€j(1077t+%)] 4 [36—3'(1077754-%)}
4 [er(187rt—%)] 4 [26—]'(187775—%)]

(d)-(e) The single-sided amplitude spectra are 6 at
fo = 5 Hz, and 4 at f = 9 and the correspond-
ing phase angles are ¢, and —3. The double-sided
amplitude spectra is given by one-half the above am-
plitudes their mirror image. The phase spectra is ob-
tained by taking antisymmetric mirror image.
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The following MATLAB commands are used to plot the
single-sided and double-sided spectra.

%chsl_ex12.m

f =[5, 9]; %» Fundamental frequencies
A =[6, 4]; % Corresponding amplitudes
theta = [pi/6, -pi/3]; % corresponding angles
subplot(2,2,1),stem(f, A, ’r’) 7% Single-sided amplitude
subplot(2,2,2) ,stem(f,theta,’m’) %» and angle spectra
f = [-f f]; %-ve and +ve frequencies
AD = [A/2 A/2]; % 1/2 A mirror image, and 1/2 A

thetaD = [-theta thetal]; Jantisymmetric angle, and angle
subplot(2,2,3), stem(f, AD,’r’) % double-sided amplitude
subplot (2,2, 4), stem(f, thetaD, ’m’)’% and angle spectra

The result is
Single-sided spectra Single-sided spectra
6 5 e ‘
~ g i
24| 1 gL
<(2_ 1] « :
= ‘
0 e 0
0 10 0 10

Double—siged spectra

5
Double-sided spectra
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Ampl
o N
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—0
_@ : :
Phase, rad
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Special signals

Consider the cosine function cos k(27t). What func-
tion results from the sum of signals of all frequencies,
l.e., >°72 1 cos k(2mt) over one period? To see this,
we write the following commands to obtain a plot of
the individual signals and their sum.

Jisumcosine.m
close %» Close the figure
t = -0.5:.01:0.5; % Time interval
m =length(t);
n = input(’No. of sequences -> ’);
x = zeros(n, m); % Initialize x
sumx = zeros(1l,m); % Initialize sum of cosines
for k = 1:n;
tn= kxt;
x(k,:)= cos(2*pixtn);
sumx = sumx + x(k,:);
end
subplot(1,2,1), plot(t, x, ’-’),
xlabel(’t’), ylabel([num2str(n), ’ cosines’])
subplot(1,2,2), plot(t, sumx, ’r’), hold on;
xlabel(’t’) ,ylabel([’sum of ’,num2str(n),’ cosines’])
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The result for n = 6 is as shown.
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Since all cosines equal unity att = 0, as n — oo,
the resultant amplitude approaches infinity at origin,
and zero elsewhere. This signal with the amplitude
approaching infinity and duration to zero (Subject to
unit area) is called a unit impulse. The graphic symbol
for the impulse function is an arrow.

The steady-state response of a system to a sinusoidal
input is known as the frequency response. Thus, we
can find the frequency response of the system over
the entire frequency range by applying a single im-
pulse as the input. We shall learn that the response of
a system to a complicated signal can be obtained by
expressing the input as a sum of weighted impulses.
(convolution). The impulse function, together with the
unit step function are very important in signal process-
ing and their properties are discussed next.
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Unit Step Function
The continuous-time unit step function denoted by u(t),
is defined by

1, t>0
“(t):{o t <0

The discrete-time step function, denoted by u[n], is
defined by

1, n>0
uln] =9 9" 20

1.0 1.00 o o o o

O O

0 t —-2-1 01 2 3 4 n
The step input u(t) represent an abrupt change in the

signal, for example as a result of a dc voltage applied
at ¢ = 0 by closing a switch. The step input is impor-
tant because the step response of a system displays
important characteristics of the system.
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Unit Pulse Function
The continuous-time unit impulse function denoted by
M(t), is defined by
1 1
1, —5< <3
O, otherwis

Mt ={

n)
1.0

N[
N|[—=
S~
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Unit Impulse Function
The unit step function shown in (a) has discontinuity at ¢ = 0.
We like to find the derivative of u(t) at the point of discontinuity.

10— _ 1.0
u(t) — = ||me—>0 0.5 it + 0.5

0 —e0 €
1

du(t) _ i 2° 0@ |
0]

dt

—e(Qe€ t

Assume that «(t¢) varies linearly form —e to € as shown in (b) .
In the limit as ¢ — 0, we have the original step function. The
derivative of (b) is shown in (c). We observe that as ¢ — O
the amplitude of «/(¢) approaches infinity, and the duration ap-
proaches to zero. Furthermore the area under v/(t) between +e
remain constant at unity. We say that the function between +e
approaches a unit impulse function, denoted by 6(¢). One way
to visulize §(t) is to view it as the limiting form of a rectangular
pulse of unit area. Mathematically this is described as

6(t) = 0 fort#0 and
/ o(t)dt = 1

— 00
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Sifting property of an impulse

x(t)

ot - to)

0 t,
Consider a continuous-time signal x(¢) multiplied by
d(t — tp) for some fixed tg. Integrating over the entire

real line, and in the light of the unit impulse definition,
the integral of this product is

/_0:0 2(£)5(t — to)dt = z(to)

That is, the operation on the left hand side sifts out the
value z(tp) of the function x(t) at t = tg. This ex-
tremely important result is called the sifting property.
This property is regarded as the formal definition of
an impulse.
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We noticed that that §(¢) is the limiting form of a rect-
angular pulse of unit area as ¢ — 0, thus, it follows
that the impulse 4 is an even function, i.e.,

d(—t) = 6(t)

The next property of an impulse is the scaling prop-
erty. Viewing the impulse as a limiting form a rect-

angular pulse of unity, it follows that the time com-

pressed impulse §(at) has an area of ﬁ thus

5(at) = |i5(t)

al

Another important property of impulse is the product
property. Again let us view the impulse as the limiting
form of a tall narrow rectangular pulse of unit area oc-

curring at t = tg. The product of a signal z(¢) with
this pulse is also a tall, narrow pulse whose height is

scaled by the value of x(t) at t = tg, or x(tp), there-
fore, we have

z(t)6(t —to) = x(to)d(t —to) & x(£)d(t) = x(0)d(¢)
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The Doublet (Derivative of an impulse)

The limiting form of the triangular signal shown in Fig-
ure (a) generates an impulse as ¢ — 0. The limit-
ing form of the signal shown in Figure (b) as ¢ — O
represent the derivative of the impulse. This signal is
referred to as a moment or a doublet signal.

f(t) % f(t) 1 1
5(8) = ”mHO—_CAOXJ—é(t) = |imﬁj;ﬂei :>J017t
)

(a) (b
The doublet signal is an odd signal
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The Doublet Properties

The doublet signal has similar properties as impulse
signal. These properties such as sifting, product, and
scaling are summarized below

/_0:0 s()6(t — to) dt = —i(t)

z(t)0(t —to) = z(tg)d(t — to) — z(to)d(t — to)
65(—t) = =6t
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Energy and Power Signals

Consider a resistor R supplied by a voltage v(t), the
instantaneous power dissipated in R is

v2(t)

p(t) = Ri*(t) =

The instantaneous Power on a per ohm basis can be
written as

p(t) = z(t)

where z(t) represent a voltage or current. Since
power is the rate of energy, we define the energy in
the interval —T' <t < T as

I 2
E = lim / 22(8)|dt
T—ooJ-T

= [ 122@lat

and the average power normalized to unit resistance
IS

. 1 T
P= lim — |x<(t)|dt
T—oo 271 J—T
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For a periodic signal x(¢) with the fundamental period
T, the average power is

L2 20
= — T
7/

The square root of the average power P is called the
root-mean-square (rms) value of the signal x(t). For
the DT signal z[n], the integrals are replaced by sums,
and the signal energy is

N
E=)> z°[n]
—N
and the average power is
1 X o
P= Ilim —
N—oo 2N _Z]:V 7]

For a periodic signal z[n], with fundamental period NV,
the average power is

1= 2
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A signal is referred to as energy signal, if and only if
the total energy of the signal satisfies the condition

O< F < sothat P =0

A signal is referred to as power signal, if and only if
the total energy of the signal satisfies the condition

O< P < = F = 0

An energy signal has zero average power, whereas
a power signal has infinite energy. Thus the periodic
signals are classified as power signals.
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The signal energy of three typical pulse shown are

I Rectangular Half-cycle Triangular
A pulse smusmd pulse
| E = A% \ E = 1A2b E=1A%

Example 1.14
Find the signal energy for the following signals

z(t) y(t) z(t)y(t) z(t) +y(t)

5_

)4 1 2(d)45

(@) E=(2)*(5) =20
b) B=:(3)@3)=9

© B=(6)?(3)=36

d) E =/ [x(t) + y(t)]?dt
= / [22(t) + y2(t) + 2z (t)y(t)]dt
=FE,+ Ey+ 2 /OO x(t)y(t)dt

=20+9+72=101
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Example 1.15
Find the total energy and the average power of the
periodic signal x(t) = sint

0 2
E=/ sin“(t)dt
— OO
oo 1
=/ — (1 — cos2t)dt
—o0 2

1 1 o0
=—<t——Sln2t>‘ = 00
2 2 oo

The average power is
1 [T
P:Q—/ sin?(t)dt

/ — (1 — cos2t) dt
2T

1 T 1
(t——stt)‘ — —
4T 2 _T 2

50



Systems

A system is an interconnection of components that
transforms an input signal into an output signal. We
can therefore view a system as a mapping from an
input function onto an output function.

—— t
uty——— u(t) Cg{)g{é‘,’,?miy(t) vt
0 H
0 t O |
O . |
" TTTTTTTT i | Discrete |yt VIl M
H
0 i 6 |

continuous-time systems Input and output are continuous-
time signals, and we write

y(t) = Hu(t)
Discrete-time system Input and output are discrete-
time signals, and we write

yln] = Huln]

Hybrid system may have CT and DT input and output
signals.
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Instantaneous Systems
Some systems may be modeled by instantaneous (Non-
dynamic) linear relationships such as

y(t) = Az(t) + B

where A and B are constants, or a nonlinear relation-
ship such as

y(t) = Az?(t) + Bx(t) + C

Instantaneous systems are referred to as memoryless
since the output y(¢t) depends only on the instanta-
neous value of xz(t). For example, a resistor is memo-
ryless since in cause and effect relation i(t) = %v(t),
the current at time ¢ depends on the the input at time
t. The discrete-time signal described by

yln] = 2z(n]

is memoryless, since the value of y[n] at time n de-
pends only on the present value of the input z[n].
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Dynamic Systems

Continuous-time systems are often modeled by lin-
ear time-invariant differential equation. In general the
input-output relationship may be given by

dru(t dn—l t dy(t
ii) +"'”—1dt+_g)+'“+“1 yd(t) aoy(t) =
dmz(t) dm_lx(t) dx(t)
bt e b A box(t)

The coefficients of the above differential equation are
the parameters of the physical system. Dynamic sys-
tems are systems with memory. For example an in-
ductor has memory, since the current in an inductor
given by

i(t) = %/_toov(T)dT

depends on all past values of the voltage v(t). The
memory of an inductor extends into the infinite past.
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Time-invariant and Time-varying Systems

A system is time-invariant or fixed, if its input-output
relationship does not change with time, i.e., if H[z(t)] =
y(t), then

Hlz(t —7)] =yt —7)

For example, the system described by

y(t) = z(t) + Az(t —T)

is time-invariant if A and T are constants. Also, if
the coefficients of the differential equation described
earlier are constant, the system is referred to as a
time-invariant system. In the time-invariant systems
the shape of the response y(¢) depends only on the
shape of the input z(¢) and not on the time when it is
applied. When one ore more coefficients are function
of time, the system is called time-varying system.
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Causal and Noncausal Systems

A system is causal or non-anticipating if its present
response depends on the present and/or past values
of the input signal. Systems whose present response
is affected by future inputs are termed noncausal or
anticipating. All physical systems are causal, how-
ever ideal systems such as ideal filters often turn out
to be noncausal. For example, the average system
described by

i) =  (aln — 2] + 2ln — 1] + 2[n))

Is causal, whereas, the average system described by

il = 3 (aln — 1] + eln] + ol + 1)

is noncausal, since the output signal y[n] depends on
a future value of the input signal z[n + 1].
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Linear and Nonlinear Systems
A system is linear if it satisfies the principle of super-

position
mil®) e w200 7 vel)
yi(t) = Hlz1(t)]  y2(t) = H[z2(t)]

onz1(t) + azwa(t) ony1(t) + aoy2(t)

H

a1y1(t) + azy2(t) = Hlarz1(t) + asza(t)]

That is, the response of a linear system to a weighted
sum of inputs equal to the same weighted sum of out-
put signals.
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Example 2.1
The system described by

Yt () = a(t)

is linear (but time-varying), since for signals = (¢),
and x> (t)

d
% + ty1(t) = z1(t) and

dy2

o + ty2(t) = z2(t) then

d d
al% + az% + aity1(t) + asty2(t) = arx1(t) + azaa(t)

d
%(alyl(t)+Oé2y2(t))—l—t(alyl(t)—|—a2y2(t)) — 121+ asxo

That is, the response to the input a1 (t) + aszo(t)
is a1y1(t) + ary>(t). But the system is time varying
since the coefficient of y(¢) is not a constant.
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Example 2.2

Is the system described by y[n] = 3u[n] + 5 linear
or nonlinear?

Let u1[n] = 1, and us[n] = 2, then

y1[n] = 3ui[n] +5=28

yo2[n] = 3us[n] +5 =11

The sum of two response is 19, but the sum of the
input signals yield the response

y3[n] = 3(uy[n] + up[n]) + 5 = 14

which is not the same. therefore, the system is non-
linear.
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In linear systems, scaling input leads to an ideal scal-
ing of the output. This means zero output for zero in-
put and a linear input-output relation passing through
origin.

A system with initial condition can be treated as a
multiple-input system with initial condition acting alone
as an additional input.

Nonlinear Systems
A system is nonlinear if it has

e Nonlinear elements
e Nonzero initial conditions

e Internal sources
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Convolution

The concept of convolution is first introduced by find-
ing the solution of a first order differential equation by
the techniques of the variation of parameters. An ex-
ample of a linear time-invariant system leading to a
first order differential equation is the familiar RC' cir-
cuit shown.

The output y(t) is the voltage across the capacitor
with the initial value of yg at time ¢t = t.

Applying KVL, we have

x(t) = Ri(t) +y(t) and i(t) = Cd%—(tt)
Substituting for ¢
dy(t) _
RCF + y(t) = x(t)

RC' is the circuit time constant shown by 7, thus
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dy(t) +y(t) = a(t)

This is a first-order dlfferentlal equation. The complete
solution is the sum of the homogeneous solution (nat-
ural response or zero-input response), and the partic-
ular integral solution(force response or the zero state
response). For the homogeneous solution, we have

dyp(t)
-
dt
Assuming a solution of the form y;,(t) = AeP?, and
substituting into the homogeneous equation, we find

p = —1 andthe homogeneous solution
=

+yn(t) =0

yp(t) = Ae™
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The total solution of the nonhomogeneous equation

dy(t) +y(t) = 2(t)

can be obtained by applylng the technique of variation
of parameters, which is the same form of solution as
yp,(t), except the coefficient A is a function of time,
shown by A(t),

_t
y(t) = A(t)e 7
Differentiating by means of chain rule, we have

dy(t)  [dA(t) A@)] _¢
14040

Substituting for y(¢) and d%—(tt) in the nonhomogeneous
equation, we get

dA(t) A(t)
T[ dt T

] e™T + A(t)e T = 2(t)

or
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Solving for A(t), and using A as a dummy variable,
we obtain

A(t) = /t ; x()\)%e%d)\ + A(to)

t

where A(tg) = yoeTO. Substituting for A(¢) in the
assumed solution, results in
—t

y(t>=[/toa:<x> 67d>\+yo€t9] e

=ype x()\) e d)\

If the input z(¢) is applied at t = —oo, and yg =
y(—oo0) = 0, we have

y() = /_t . x(A)ée—¥d,\

If we define

h(t) = %e—fu(t)

then

1 _ (=)
h(t — X)) = —e 7 u(t—\)
T
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The solution is

t
y(t) = /tozc()\)h(t ~ A)dA

or
t
y(t)=/ h(\)z(t — \)dA
to

Recall that we showed %e_gu(t) by h(t). We can
show that this is the impulse response of the RC cir-
cuit described by (Example 2-11 Textbook)

dy(t)+ y(t) = 2(t)  —oo<t< oo

Foranimpulse input x(t) = 6(¢), the response y(t) =
h(t), and since fort > 0, §(t) = 0, the governing dif-
ferential equation for the impulse response is

_dh(t)

o +h(t) =0 t>0
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Assuming a solution of the form h(t) = AeP! and
substituting in the given equation, we obtain
—1

(Tp+1)A€pt:O — p:T

Therefore,
h(t) = Aem t>0

To find A, we need h(071), so rewriting the given
equation fort > 0O

dh(t)

dt
In the above relation for the left hand side to be iden-
tically equal to the right hand side the term in the left
hand side must be an impulse. h(t) cannot be an im-
pulse since Tdh(t) must be a unit doublet. Therefore,

f " h(t)dt = 0. The integral fromt = 0~ to ¢t = O

+ h(t) =6(t) t>0

ot dh(t)
t:O—

o+
+ /_O_ h(t)dtz/tzo_ 5(t)dt
T[h(0+> ~h(07)]+0=1
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Since h(0~) = 0, we have h(01) = 1, therefore
A= % and the impulse response is
1 —
h(t) = —er

-
Rewriting this important result again, the response of
a continuous time-invariant system y(¢), to an input
x(t) is given by

t
u(t) :/t 2(A)A(t — N)dA

0
or

t
() = /toh()\)x(t ~ A)dA

where h(t) is the impulse response of the system.
This important result is known as the convolution inte-
gral. The above convolution integral are often written
symbolically as

y(t) = h(t) * z(t)

y(t) = z(t) = h(t)
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Superposition Integral for LTI Systems

The response of a LTI system to an input signal z(t)
can be obtained by expressing the input z(¢) as a
weighted superposition of time-shifted impulses. We

divide x(t) into narrow rectangular strips of width T,

atnT,n = +£1,£2,---, and replace each strip by an
impulse with strength T.x(nt) which is the area under
each strip.

@)

Z(t) = > T.x(nT)é(t—nT) Sum of shifted impulses

nN——0oo

2 T

15} L1 igt()t) 1
Z 1
0.5

T

0
-0.2

0 0.2

0.4 0.6 08 ' 1

1.2
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By superposition the response is a weighted superpo-
sition of time-shifted responses, i.e.,

00
y(t) = Z T.x(nT)h(t—nT) Sum of shifted impulse responses

NnN=—00
In the limit as T — d)\ — 0O with nT" as a continuous
variable \

T—d\ T—d\

n——oo

x(t)= lim z(t) = Iim [ i T.x(nT)o(t —nT)

=/_OO (V)6 — N)dA

and

y(t) = lim [ io: T.x(nT)h(t—nT)}

T—d\ [

n—-—oo

=/_OO (M)A — N)dA
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For casual systems the upper limit can be set to ¢,
also, if z(t) = 0O for t < 0, the lower limit becomes
zero and we have

t
u(t) =/Ox()\)h(t—>\)d>\

Alternatively, making a change of variable 0 =t — A,
we have

y(t) = /Ot:z:(t — o h(o)do

In summary, the response of a LTI system to an input
x(t) is expressed as a Convolution integral

(1) = z(t) = h(t) = /OO (M)At — N)dA

— 00
where h(t) is the impulse response. We can view
this integral as the product of the input and a shifted
and flipped version of the impulse response and then
evaluating the area of the product z(A\)h(t — \) as ¢
increases. Alternatively, we can write

(1) = h(t) « z(t) = / ROzt — A)dA

— OO
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Some Properties of Convolution

1.
2.
3.

h(t) xx(t) = x(t) * h(t)
h(t) * [ax(t)] = alh(t) * z(1)]

h(t) x [£1(t) + x2(t)] = h(t) * z1(t) + h(t) *
ro(t)

. h(t) x [21(¢) * 22(t)] = [A(2) * z1(£)] * z2(¢)
. The starting time of y(¢) equals the sum of the

starting times of x(¢) and h(t). The ending time
of y(t) equals the sum of the ending times of x(t)
and h(t)

. The duration of y(t) equals the sum of the dura-

tions of z(¢) and h(t)

. The value of y(t) equals the area of the product

of x(t) and h(t)

70



Graphical Convolution

In some cases the convolution integral may be ob-
tained by evaluating the area formed by the product
h(\) and x(t — X\), orx(\) and A(t — X\). The choice
of which function to fold and slide is arbitrary. With
the first choice, we shift z(¢ — \) from a position of
no overlap with x(t) over the entire ranges of overlap.
We establish the correct ranges as follows:

e set up two sequences containing the range end
points of x(t) and h(t).

e Form their pairwise sum (by summing each value
from one sequence with the other).

e Arrange inincreasing order & discard duplications.

Example 2.3

Two sequences for signals h(t), and x(t) are {0, 2},
and {—1,0, 1}. Find the ranges for nonzero convolu-
tion. The pairwise sumis {—1,0,1,1,2,3}. Discard-
ing duplicates, we get {—1,0, 1,2, 3}. Therefore, the
ranges for nonzero convolution are

~1<t<0, 0<t<l, 1<t<?2, & 2<t<3
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Analytical Convolution

Given the analytical expressions for z(t), and h(t),
for x(t) = h(t), we form z(\), and hA(t — \), or for
h(t)xx(t), we form h(\), and z(t — \), and integrate
their products. Remember that when integrating h (¢t —
A), and z(¢t — ) are function of A\, and ¢ is constant
with respect to \. For piecewise signals the integral is
considered over the limits of each interval.
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Example 2.4 (Example 2-7 Textbook)
Obtain the convolution of the two following rectangular-
pulse signals.

(t) = 21 (?) and  h(t) = I (%)

Run chs2_ex4.m to see a demonstration of

y(t) = z(¢) = h(t)

2 ] ,I T ]
NN A
x . .
_2 1 ] 7| ] ] 7| ]
-2 0 2 4 6 8 10
2_
= og |
<
_2_ 1 1 1
-2 0 2 4 6 8 10
_ 2 T T
T 0 | 1
< 5 Hit Enter to move x(t-A) — A
22 0 2 4 . 6 . 8 10
) . . . . . .
_4 1 1
4 5 6 7 8 9 10 11

73



In the convolution integral, the time ¢, determines the
relative location of x(¢t — \) with respect to h(\). We
must evaluate the product z(¢ — A\)h(\) as ¢ varies.
First z(t) is reversed and shifted to obtain z(t — ).
Then the signal z(t — M) is moved along the t-axis,
and the overlap area is evaluated. The pairwise sum
of sequences {0,4},and {4,6} is {4,6,8,10}. The
ranges for nonzero convolution are

4 <t<6, 6<t<8,and8<t<10

. Thus, y(t) is given by

( 2(t — 4) 4 <t<6

y(t)Z{ 4 6<t<38
2[4 - (t—-6)] =2(10—-t) 8<t<10

0 otherwise

\
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Example 2.5 (Example 2-8 Textbook)
Obtain the convolution of the two following signals.

xz(t) = 2MN(t + 0.5) — 2N — 0.5) and
h(t) = 0.57(t)u(2 — t)

Run chs2_ex5 to see a demonstration of y(¢) = z(t) * h(t)

2 2 2
1 J 1 | 1
= , ‘ of <o

X(t)
o

h(t)

t—2 t

-4 -2 0 2 4 4 2 0 2 4 4 2 0 2 4
t t A
2 2 2
1 [ | EEREES R 1 1
=< : : < =< | |
< 0 ‘ < 0 < 0
-2 t -2 t 42 |t
-1 -1 S -1
-2 -2 -2
-4 -2 0 2 4 4 2 0 2 4 4 2 0 2 4
A A A
2 2

x(\)
o
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The pairwise sum of the sequences {0,2},and {—1,0,1}
is {—1,0,1,1,2,3}. Discarding duplicates, we get
{—1,0,1,2,3}. Therefore, the ranges for nonzero
convolution are

—1<t<0, 0<t<l, 1<t<?2, & 2<t<3

Referring to the illustrated graph, the integral is formed
and evaluated at various intervals as follows

Since h(t) = 5t, then h(t — X) = 5(t — \).
Fort < 0,ort >3 y(t) =0

For -1 <t<O

y(t) = /_1(2)%(15—»@ - /_1(t—>\)d>\

To integrate, we make a change of variable, 7 = t — A, therefore,

dr = —dA\, and changing the limits of the integral, the result is
0 0
1 1
y(t) = —/ rdr = — =72 = Z(t+ 1)
t+1 2 i1 2
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ForO<t<1

0 1 t 1
y(t) = / (@5t =Ndr+ /O (-3t~ M)A

Change the variable, = = t — X, therefore, dr = —d\, and
changing the limits of the integral, the result is

t 0
y(t) =— / rdr + / TdT
t+1 t

t 0
1 2

2

12
-I-QT

t+1 t

= %(—tQ +2t+1)

Forl <t<?2
0 1 . 1
v = [ @5-Nar+ [ (25 nar
t—2 2 0 2
Change the variable, = = t — X, therefore, dr = —d\, and

changing the limits of the integral, the result is

t t—1
y(t) = —/ TdT —|—/ TdT
2 t
to t—1

1ol 1

—— T
2 2

2 t

:é(—t2—2t+1)+2
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For2 <t <3

1

y@®) = [ (=2)5(t-)ax
t—2

Change the variable, = = t — ), therefore, dr = —d\, and
changing the limits of the integral, the result is

t—1 1
y(t) :/ rdr = =12
5 2

_ 1o _
= —2t4+1) -2

t—1

2
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Example 2.6
Given z(t) = e 3tu(t) and h(t) = e tu(t) evaluate
the convolution y(t) = =(t) * h(t).

z(A\) = e~ 3Mu() and A(t — X)) = e~ E Nyt — N).
Since u(\) = 0, for A < 0, and u(t — ) = 0, for

A > t, the convolution integral becomes

(1) = 2(t) * h(t) = / T e u(N)e E Nyt — A)da

— OO0

t
=e_t/ e A\ = et [—36_2)‘]
0 2

1
—et (1 — —e_2t>
2

t

0
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Example 2.7
In the ideal op amp circuit shown, show that the output
voltage y(t) is the integral of the input voltage = (t).

R1 = 10 K2

y(t)

Applying KCL to node 1, we have

1= 4 00 (0 —wo(1)) = 0

For ideal op amps, v; = v> = 0, + = 0O, and we obtain

z(t)  ,dvo(t)

1 t
— - =0 or t) = — A)dA
. of w0 (t) Rc/_oo"’"()

Substituting for R and C', we get RC' = 1, and since

y(t) = —E’Uo(t) we obtain
Ry

y(t) = /_ x(A)dA
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t
y(H) = [ a(Ndx
— 00
The above integral is presented symbolically as

Integrator

z(t) y(t)

_,f_,

Example 2.8

(a) Obtain the impulse response of the integrator in Example 2.7
The input is a unit impulse, i.e., z(t) = §(t), then the impulse
response is

h(t) = /t S dA = u(t)

(b) Using the convolution integral find the system response to a
unit ramp input, x(t) = tu(t).

0.8}

y(t) = z(t) * h(t) = / Au(N)u(t — N)dA

— 00

Since u(A) = 0for A < 0,and u(t—A) = O, for A > t, we have

t 1
y(t) / A\ = =2
0 2
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More on the Impulse response of LTI Systems
Finding the impulse response of a system directly from
time domain is often tedious compared to the solution
In s-domain.

In s-domain, the response of a system described by a
transfer function G(s) is

Y(s) = G(s)X(s)

If the input is a unit impulse function, i.e., x(t) = §(¢),
then X (s) = L[6(t)] = 1, the s-domain impulse re-
sponse is

H(s) = G(s)(1) or h(t) = L7G(s)]
Therefore, the inverse Laplace transform of the trans-
fer function is the impulse response. In this section we
consider finding the impulse response in time-domain.

If the step response of a system is known, then since
o(t) = d"élgt), then for LTI systems the impulse re-
sponse h(t) is the derivative of the step response

u(t), i.e.,

da(t)
dt
where a(t) is the step response.

h(t) =
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We have already obtained the impulse response for
a first-order system (RC circuit). To generalize the
technique, consider a first-order differential equation
described by

dy(t)
” + aoy(t) = box(t)
For impulse response, we write
dh(t
D+ aoh(t) = bod (1)
Assuming a solution of the form h(t) = AeP! and

substituting in the given equation, since for ¢ > O,
5(t) = 0, we obtain

(p+ag)de =0 = p=—ag
Therefore,
h(t) = Ae™ %! >0

To find A = h(0T1), we need h(01), so rewriting the
given equation fort > 0
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dh(t)
dt
and the integral fromt =0~ to¢t = 0t is

+ agh(t) = bgd(t) t>0

ot ot
der / agh(t)dt = by 5(t)dt

t=0— t=0"
[h<o+> —h(o—>] +0 = b
Since h(0~) = 0, we have h(0T) = by, therefore
A = bg, and the impulse response is
h(t) = bge 0!

To generalize the solution, we conclude that the im-
pulse response of

dyd(t)+aoy(t)—box(t) with () =0

IS equivalent to solving the homogeneous equation

dy(t)

T apy(t) =0 with y(0) = bg
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Similarly, the impulse response of a second order
system

d?y(t) dy(t)

o tai— = taogy(t) = box(?)

can be found as the solution to the homogeneous
equation

d2y(t dy(t .
dig ) -+ al%) + agy(t) = 0 with
y(0) =0 anddy(o) = bg
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Example 2.9 (Example 2-12 textbook)
Find the impulse response of the LC' circuit shown
L

o YY) Te)

i — =

+
x(t) C —— y(t)

(e, O

Applying KVL, we have

d
L% + y(t) = x(t) and

iszZ—(tt) therefore, we have
Po® L 1y =1
- = —
w2 T rc? LC

The impulse response is equivalent to the homoge-
neous solution given by

d2y(t) 1

| 1
o T 7 ou(t) =0 withy(0) =0, & y =

LC
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The characteristic equation is

1 1

2 : :

L — =0 orp=+4j—— = +jw
b LC P J\/LC %0

Therefore, the impulse response is

h(t) = [B1 coswot + B> sin wot]u(t)

Applying the initial conditions

h(0) =0= B; and

1
h'(0) = wgBy = — or By =
(0) = wo B> IC 2 = wg
Therefore, the impulse response is

h(t) = wgsinwotu(t)
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Superposition Integral in terms of Step Response
The convolution integral in terms of the impulse

(1) = /_0:0 2(t — Mh(N)dA

Using integration by part fc? udv = uv|g — fé’ vdu. Let
u = x(t — \) and dv = h(\)dA\, then

du = —z(t — \)dX\ and

v(A\) = A h(¢)d¢ = a(t), (step response)

Thus, we have

y(O)=a() alt = N[+ [ a(t = Va(N)dA

—0+ /_O:O #(t — Na(\)dA

Thus, convolution of z(t¢), with step response a(t),
known as Duhamel’s integral is

o

y(t) = a(t) * z(t) = / a(M\)a(t — A)dA

— OO
Alternatively,

O

(1) = z(t) * a(t) =/ #(N)a(t — \)dA

— 00
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Example 2.10 (Example 12-13 Textbook)
The input to a system is a unit ramp, i.e., z(t) =
tu(t). Using the convolution integral in terms of step
response find the ramp response.
Since z(t) = u(t), then

yp(t) =a(t) * () = /OO a(\)a(t — A)dA

_ /_OZO a(\)u(t —_AO)Od)\ — /_too a(\)dA

Thus, the ramp response is the integral of the step
response.
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Example 2.11 (Example 2-14 Text)
The step response of the RC circuit considered ear-
lier is
a(t) = (1 _ ﬁ) u(t)
Find the response to the triangular signal
zp=r(t)—2r(t—1)+rt—2)
We first find the ramp response?

vr® = [ adr = [ (1-¢7 ) u(r)ax

0
2\t
— (1) 4 7 [67] u(t)
0
—r(t) — 7 [1 _ e%tu(t)]
By superposition the response to x A (¢) signal is

yn(t) = yr(t) — 2yp(t — 1) +yr(t —2)
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The following script file (chs2_ex11.m) demonstrate
the Duhamel’s integral for the above example (Exam-
ple 2-14 Text)

%»  DuHammel’s integral for Example 2-14 Text

o

RC = 0.1;

del_t = 0.001;

t = -0.5:del_t:2.5;

tp = -2x0.5:del_t:2%2.5; % time range for output
x_del=rmp_fn(t)-2*rmp_fn(t-1)+rmp_fn(t-2);%triangular input
x_del_dot=stp_fn(t)-2*stp_fn(t-1)+stp_fn(t-2);%Der.of input
a = (1 - exp(-t/RC)) .*stp_fn(t); /s step response
y = del_t*conv(x_del_dot, a);

subplot(3,1,1), plot(t, x_del, t, x_del_dot)

text (0.5, 0.2, ’ x_{\Delta}(t)’), text(1.05, 0, ’u(t)’)
subplot(3,1,2), plot(t, a’,’r’),

text(.15,.5, ’a(t), step response’)

subplot(3,1,3), plot(tp, y,’m’), xlabel(’t’),

axis([-.5 2.5 0 11)

text (0.8, .5, ’y_{\Deltal}(t)’)
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The result is

0.5

0.5

x, (1)

0.5

a(t), step response

(¢}

0.5

1.5

0.5

1.5

2.5
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Frequency Response Function of a LTl system
The sinusoidal input and its response is of major im-
portance in signal analysis, since a periodic signal can
be expressed as a weighted combination of sinusoidal
signals. If we know the response of a LTI system
to sinusoids of all frequencies, we have a complete
characteristics of the system. In the Electric Circuits
course, we learned that, if the input to a LTI system is
a sinusoid of frequency w rad/s, the steady-state re-
sponse (i.e., response after all transient has decayed)
is a sinusoid of the same frequency.
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Consider a complex sinusoidal input z(t) = e/“? to a
system with its impulse response given by h(t). The
convolution integral gives the output as

(1) = /_O; eI t=N B (A)dA

Since the integral is with respect to A\, we can write

. ©,@) .
y(t) = eIt / h(M\)e T“AdN

. — OO
= eI H(w)
where, we have defined
> WA
H(w) = / h(X\)e @A A
— OO
The system output is a complex sinusoid of the same
frequency as the input multiplied by the complex func-

tion H(w). We shall learn that H(w) corresponds to
the Fourier transform of the impulse response h(t).
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Expressing the response in polar form, we have
y(t) = | H(w)ed (<141 )

where |H (w)| is termed the magnitude response, and
/ H(w) is termed the phase response of the system.

For a cosinusoidal input

x(t) = X cos(wt + ¢)

The steady-state sinusoidal response is

y(t) = |H(w)|X cos(wt + ¢ + /H(w))
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Example 2.12 (Example 2-16 Text)
Determine the frequency response function H(w) for
the RC circuit considered earlier.

The impulse response of the RC circuit was found to

be

h(t) = %e—fu(t)

Therefore, the FRTF is

o0 Y o 1 t :
H(w)z/ h(\)e % d>\=/ ZeTre Ity (1) dt

— 00 -0 T

_ 00 le—(jw-l-%)tdt — {_ i_ 16—(jw-|—%)t
0O 7 Jw + =
0
1 1 —jtan_le

_1—|-ij— \/1—|—(UJT)2

96



For the complex input signal

z(t) = Xel*t
the output is
y(t) = X ej(wt—tan_l WwT)
V14 (wr)?

For the cosine input z(¢t) = X cos(wt), the response
IS

1

cos(wt — tan™ ~ wT)

(t) =
! V14 (wr)2
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System Stability

A system is bounded-input, bounded-output stable, if
for every bounded input, the output remains bounded
for all times. For a LTI system described by the differ-
ential equation

d"u(t d"Ly(t dy(t
ii)“n—ld%—g)*““l ydi)“(’y(t):
dmz(t) dm_lx(t) dx(t)

b T b Tty + bo(8)

is BIBO stable if the m < n, and all roots of the
characteristic polynomial

p"+an_1p""t+aipt+ag=0

have negative real part.

By definition an input signal z(t) is bounded if there
exist a number M such that

lz(t)| < M forallt

Then a system is BIBO stable if, for a finite number R,

ly(t)| < R forallt
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For example, the response given by

y(t) = z2(t)

is BIBO stable, because y(t) is bounded for any bounded
input z(¢). On the other hand the integrating op amp

u(t) :/Otzc()\)d)\
is unstable. Let h(t) = u(t)

0 0
/o |h(¢)|dt :/o = t|g° = oo =  unbounded
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Since the input-output characteristics of a LTI system
are completely described by its impulse response h(t),
then expressing the response y(t) in terms of the con-
volution integral

(1) = /_0:0 (VA — N)dA

for bounded input
2(8)] < M < oo
the output
©.@) 0. @)
y(8)| = ‘/ 2(\)h(t — )\)d)\‘ < / MIh(t — \)|dA
— OO — OO
©.@) ©.@)
:M/ B(t — \)|dA = M/ h(o)|do
— 00 —00

Therefore, the output is bounded if

/OO h(t)|dt < oo

Thus a system is BIBO if its impulse response is ab-
solutely integrable.
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Example 2.13 (Example 2-17 Text)
Is the system described by the RC circuit stable?

The impulse response of the RC' circuit was found as

1
h(t) = —e~ru(t)
T
For BIBO
1 OO 1
/OO —e Tu(t)‘dt— —e gdt
—0o0 | T O 7
+7 00
= — [e_?] =1<
0

There the RC circuit is BIBO stable.
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Example 2.14 (Example 2-18 Textbook)
The step response of Example 2.9 (Example 2-12 text-
book) was found to be

h(t) = sin wotu(t)

Determine whether the system is stable or unstable.

o0 0 0
/ |h(t)|dt=wo/ [sin wotu(t)|dt = wo/ | sin wot|dt
—00 —00 0

The integral does not converge, and the system is
BIBO unstable.
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Example 2.15
The step response of a system is

h(t) = e*u(t)

Determine whether the system is stable or unstable.

©.@) ©.@) ©.@)
/ |h(2)|dt = / eMu(t)|dt = / e dt
0 — OO

0
The integral is unbounded at the upper limit and the
system is BIBO unstable.
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SIMULATION DIAGRAM

The differential equations of a lumped linear network
can be written in the form

x(t) = Ax(¢) 4+ Bu(?) (1)
y(t) = Cx(¢) + Du(?)

This system of first-order differential equations is known
as the state equation of the system, and x is the state
vector. One advantage of the state-space method is
that the form lends itself easily to the digital and/or
analog computer methods of solution. Further, the
state-space method can be easily extended to anal-
ysis of nonlinear systems. State equations may be
obtained from an nth-order differential equation or di-
rectly from the system model by identifying appropri-
ate state variables.
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To illustrate how we select a set of state variables,
consider an nth-order linear plant model described by
the differential equation

Ty Al
.

dy
g 1 + ...+ a1 + agy = u(t) (2)

where y(t) is the plant output and w(?) is its input. A
state model for this system is not unique, but depends
on the choice of a set of state variables. A useful set
of state variables, referred to as phase variables, is
defined as

r1 =Y, 513'2:’3), $3:?j7 R wn:yn_l
We express zj, = vy fork=1,2,...,n— 1, and
then solve for d"y/dt™, and replace y and its deriva-
tives by the corresponding state variables to give

1 = x9
o = 3
Tp—1 = on
Tn = —apr1 —airo — ...— ap_1 Tn + u(t)
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or in matrix form

i1 O 1 0 ... O 71 0
o o o 1 ... O o 0
: — : : : : : + : ’U,(t) (4)
T 1 O O o0 ... 1 T 1 0
Tn —ag —aj —az ... —Ap_1|| Tn | 1
and the output equation is
y=|1 0 0 ... 0]x (5)

The M-file ode2phv.m is developed which converts
an nth-order ordinary differential equation to the state-
space phase variable form. [A, B, C] = ode2phv(ai,
k) returns the matrices A, B, C, where ai is a row vec-
tor containing coefficients of the equation in descend-
ing order, and k is the coefficient of the right-hand
side.
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Equation (3) indicates that state variables are deter-
mined by integrating the corresponding state equa-
tion. A diagram known as the simulation diagram can
be constructed to model the given differential equa-
tions. The basic element of the simulation diagram is
the integrator. The first equation in (3) is

T1 = T

Integrating, we have

1 =/a:2d:z:

The above integral is shown by the following time-
domain symbol. The integrating block is identified by
symbol % Adding an integrator for the remaining state
variables and completing the last equation in (3) via a
summing point and feedback paths, a simulation dia-
gram is obtained.

xz(t) 1 [T (t)
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INTRODUCTION TO SIMULINK

SIMULINK is an interactive environment for model-
ing, analyzing, and simulating a wide variety of dy-
namic systems. SIMULINK provides a graphical user
interface for constructing block diagram models using
“drag-and-drop” operations. A system is configured in
terms of block diagram representation from a library
of standard components. SIMULINK is very easy to
learn. A system in block diagram representation is
built easily and the simulation results are displayed
quickly.
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Simulation algorithms and parameters can be changed
in the middle of a simulation with intuitive results, thus
providing the user with a ready access learning tool
for simulating many of the operational problems found
in the real world. SIMULINK is particularly useful for
studying the effects of nonlinearities on the behavior
of the system, and as such, it is also an ideal research
tool. The key features of SIMULINK are

Interactive simulations with live display.

A comprehensive block library for creating linear,
nonlinear, discrete or hybrid multi-input/output sys-
tems.

Seven integration methods for fixed-step, variable-
step, and stiff systems.

Unlimited hierarchical model structure.
Scalar and vector connections.

Mask facility for creating custom blocks and block
libraries.
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SIMULINK provides an open architecture that allows
you to extend the simulation environment:

e You can easily perform “what if” analyses by chang-
Ing model parameters — either interactively or in
batch mode — while your simulations are running.

e Creating custom blocks and block libraries with
your own icons and user interfaces from MATLAB,
Fortran, or C code.

e You can generate C code from SIMULINK models
for embedded applications and for rapid prototyp-
ing of control systems.

e You can create hierarchical models by grouping
blocks into subsystems. There are no limits on
the number of blocks or connections.

e SIMULINK provides immediate access to the math-
ematical, graphical, and programming capabilities
of MATLAB, you can analyze data, automate pro-
cedures, and optimize parameters directly from
SIMULINK.
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SIMULATION PARAMETERS AND SOLVER

You set the simulation parameters and select the solver
by choosing Parameters from the Simulation menu.

SIMULINK displays the Simulation Parameters dia-

log box, which uses three “pages” to manage simula-

tion parameters. Solver, Workspace I/O, and Diag-

nostics.
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SOLVER PAGE The Solver page appears when you
first choose Parameters from the Simulation menu.
The Solver page allows you to:

e Set the start and stop times — The default start
time is 0.0 seconds and the default stop time is
10.0 seconds.

e Choose the solver and specify solver parameters
— You can choose between variable-step and fixed-
step solvers. These are ode45, ode23, ode113,
ode15s, ode23s, and discrete. The default is
oded45. For variable-step solvers, you can set
the maximum and initial step size. By default,
these parameters are automatically determined.
For fixed-step solvers, you can choose odeb, ode4,
ode3, ode2, ode1, and discrete.

e Output Options — The Output options area of the
dialog box enables you to control how much out-
put the simulation generates. You can choose
from three popup options. These are: Refine out-
put, Produce additional output, and Produce spec-
ified output only.
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WORKSPACE I/0 PAGE

The Workspace I/0O page manages the input from and
the output to the MATLAB workspace, and allows:

e Loading input from the workspace — Input can
be specified either as MATLAB command or as
a matrix for the Import blocks.

e Saving the output to the workspace —You can spec-
ify return variables by selecting the Time, State,
and/or Output check boxes in the Save to workspace
area.

DIAGNOSTICS PAGE

The Diagnostics page allows you to select the level of
warning messages displayed during a simulation.
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THE SIMULATION PARAMETERS DIALOG BOX

Table below summarizes the actions performed by the
dialog box buttons, which appear on the bottom of
each dialog box page.

Button Action
Apply  Applies the current parameter values

and keeps the dialog box open. Dur-
iIng a simulation, the parameter values

are applied immediately.
Revert Changes the parameter values back to

the values they had when the Dialog
box was most recently opened and ap-
plies the parameters.

Help Displays help text for the dialog box
page.

Close  Applies the parameter values and
closes the dialog box. During a simula-
tion, the parameter values are applied
immediately.

114



To stop a simulation, choose Stop from the Simulation
menu. The keyboard shortcut for stopping a simula-
tion is Ctrl-T. You can suspend a running simulation
by choosing Pause from the Simulation menu. When
you select Pause, the menu item changes to Con-
tinue. You proceed with a suspended simulation by
choosing Continue.
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BLOCK DIAGRAM CONSTRUCTION

Atthe MATLAB prompt, type SIMULINK. The SIMULINK
BLOCK LIBRARY, containing seven icons, and five
pull-down menu heads, appears. Each icon contains
various components in the titled category. To see the
content of each category, double click on its icon. The
easy-to-use pull-down menus allow you to create a
SIMULINK block diagram, or open an existing file, per-
form the simulation, and make any modifications. Ba-
sically, one has to specify the model of the system
(state space, discrete, transfer functions, nonlinear ode’s,
etc), the input (source) to the system, and where the
output (sink) of the simulation of the system will go.
Generally when building a model, design it first on the
paper, then build it using the computer. When you
start putting the blocks together into a model, add the
blocks to the model window before adding the lines
that connect them. This way, you can reduce how
often you need to open block libraries. An introduc-
tion to SIMULINK is presented by constructing the
SIMULINK diagram for the following examples.
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MODELING EQUATIONS

Here are some examples that may improve your un-
derstanding of how to model equations.

Example A.21

Model the equation that converts Celsius temperature
to Fahrenheit. Obtain a display of Fahrenheit-Celsius
temperature graph over a range of 0 to 100°C.

Tp = JTo + 32 6)

First, consider the blocks needed to build the model.

e A ramp block to input the temperature signal, from
the source library.

e A constant block, to define the constant of 32,
also from the source library.

e A gain block, to multiply the input signal by 9/5,
from the Linear library.

e A sum block, to add the two quantities.

e A scope block to display the output, from the sink
library.
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To create a SIMULINK block diagram presentation se-
lect new... from the File menu. This provides an
untitled blank window for designing and simulating a
dynamic system. Copy the above blocks from the
block libraries into the new window by depressing the
mouse button and dragging. Assign the parameter
values to the Gain and Constant blocks by opening
(double clicking on) each block and entering the ap-
propriate value. Then click on the close button to ap-
ply the value and close the dialog box. The next step
Is to connect these icons together by drawing lines
connecting the icons using the left mouse button (hold
the button down and drag the mouse to draw a line).
You should have the block diagram shown.

/+ ]

Ramp Gain
32 +
Constant Sum

Scope
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The Ramp block inputs Celsius temperature. Open
this block, set the Slope to 1, Start time to 0, and the
Initial output to 0. The Gain block multiplies that tem-
perature by the constant 9/5. The sum block adds
the value 32 to the result and outputs the Fahrenheit
temperature. Pull down the Simulation dialog box and
select Parameters. Set the Start time to zero and the
Stop Time to 100. Pull down the File menu and use
Save to save the model under simexa21 Start the
simulation. Double click on the Scope, click on the

Auto Scale, the result is displayed as shown.
220 ) .. ) )

180

140
Fahrenheit

100

60

20

0 20 40 60 80 100

Celsius
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Example A.22

Construct a simulation diagram for the state equation
described in Example A.18. Use SIMULINK to model
and simulate the step response of this system.

State equation in Example A.18for M = 1kg, B =5
N/m/sec, K = 25 N/m, and f(t) = 25u(t), is

r1 = )

x> = —25x1 — 5z 4+ 25u(t)

The simulation diagram is drawn from the above equa-
tions by inspection and is shown.

F =25
j — I l o l r1 [ ]
— S S
Step Input sSum Integ.1 Integ.2 Scope 1
= } ]
Gain2 55 Scope 2

Gain1
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To create a SIMULINK block diagram presentation se-
lect new... from the File menu. This provides an
untitled blank window for designing and simulating a
dynamic system. You can copy blocks from within
any of the seven block libraries or other previously
opened windows into the new window by depressing
the mouse button and dragging. Open the Source Li-
brary and drag the Step Input block to your window.
Double click on Step Input to open its dialog box. Set
the step time and the Initial Value to O, and the Final
Value to 25 to represent the step input. Open the Lin-
ear Library and drag the Sum block to the right of the
Step Input block. Open the Sum dialog box and enter
+ - - under List of Signs. Using the left mouse button,
click and drag from the Step output port to the Sum-
ming block input port to connect them. Drag a copy of
the Integrator block from the Linear Library and con-
nect it to the output port of the Sum block. Click on the
Integrator block once to highlight it. Use the Edit com-
mand from the menu bar to copy and paste a second
Integrator.
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Next drag a copy of the Gain block from the Linear
Library. Highlight the Gain block, and from the pull-
down Options menu, click on the Flip Horizontal to
rotate the Gain block by 180°. Double click on Gain
block to open its dialog box and set the gain to 5.
Make a copy of this block and set its gain to 25. Con-
nect the output ports of the Gain blocks to the Sum
block and their input ports to the locations shown. Fi-
nally, get two Auto-Scale Graphs from the Sink Li-
brary, and connect them to the output of each Inte-
grator. Before starting simulation, you must set the
simulation parameters. Pull down the Simulation di-
alog box and select Parameters. Set the Start Time
to zero, the Stop Time to 3, and for a more accurate
integration, set the Maximum Step Size to 0.1. Leave
the other parameters at their default values. Press OK
to close the dialog box.
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If you don’t like some aspect of the diagram, you can
change it in a variety of ways. You can move any of the
icons by clicking on its center and dragging. You can
move any of the lines by clicking on one of its corners
and dragging. You can change the size and the shape
of any of the icons by clicking and dragging on its cor-
ners. You can remove any line or icon by clicking on it
to select it and using the cut command from the edit
menu. You should now have exactly the same system
as shown. Pull down the File menu and use Save as
to save the model under a file name simexa22. Start
the simulation. SIMULINK will create the Figure win-
dows and display the system responses. To see the
second Figure window, click and drag the first one to
a new location. The simulation results are shown in
the next page.
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t, sec
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Example A.23
Consider the system defined by

d3y d2
— 8— 10y = 10wu(t
073 d 5 J 4 + 10y u(t)
We have three state varlables.
r1 =Y
To =1y
T3 =1y

Then we obtain
1 =12
T2 =13
xr3=—5x1 — 4xo — 2x3 + 5u(t)
In matrix notation, the state and output equation are

1 0 1 0 T1 0
ro | = 0 0 1 x> | + | O | u(t)
_513"3_ _—5 —4 —2__:13‘3_ _5_
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The simulation block diagram is obtained from the sys-
tem differential equations as shown, it is saved as
simexa23.

5u(t)

j T3 l T3 l T l 1 |[ ]
— S S S
Step Input — Integ.1 | Integ.2 | Integ.3 Scope

Sum

Gain3

4
Gain2

The simulation response is
1.4 T~ — . . . . .
1.2+ -/ ...... ..... ...... ..... ..... J
1.0 L/ /e N N
08 ....... ..... /A ..... ...... ..... ...... ..... ..... 4
06 ....... ..... ...... ..... ...... ..... ...... ..... ..... i
04 | TRSTEIEN P RRRF RERPIS RRRRE
0.2 ..... ...... ..... ...... ..... ...... ..... ..... i
o VA

O 2 4 6 6 10 12 14 16 18 20

t, sec
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Example A.24

Use the state-space model to simulate the state and
output equations described in Example A.23.

The State-Space model provides a dialog box where
the A, B, C, and D matrices can be entered in MAT-
LAB matrix notation. A SIMULINK diagram using the
State-Space model is constructed as shown, and is
saved as simexa24. The result is the same as before.

5u(t)

j r = Ax + Bu | 1 |[ |
y = Cx + Du

Step Input Scope

State-space

Note that the output is given by y = x1, and we define
CasC =[1 0 O0]. Ifitis desired to access all
the states, then we can define C as an identity matrix,
in this case a third order, i.e., C = eye(3), and D
as D = zeros(3,1). The output is a vector of state
variables. A DeMux block may be added to produce
individual states for graphing separately.
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USING THE TO WORKSPACE BLOCK

The To Workspace block can be used to return output
trajectories to the MATLAB Workspace. This is illus-
trates below.

Example A.25

Obtain the step response of the following transfer func-
tion, and send the result to the MATLAB Workspace.

C(s) 25
R(s) s2+42s+25
where r(t) is a unit step function. The SIMULINK
block diagram is constructed and saved in a file named
simexa25 as shown.
u(t)

il .
s242s+25
Step Input

C

Transfer Fcn To Workspace

(L ¢

Clock  To Workspace
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The To Workspace block can accept a vector input,
with each input element’s trajectories stored as a col-
umn vector in the resulting workspace variable. To
specify the variables open the To Workspace block
and for the variable name enter c. The time vector
is stored by feeding a Clock block into To Workspace
block. For this block variable name specify t. The vec-
tors c and t are returned to MATLAB Workspace upon
simulation.
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LINEAR STATE-SPACE MODEL FROM SIMULINK
DIAGRAM

SIMULINK provides the linmod, and dlinmod func-
tions to extract linear models from the block diagram
model in the form of the state-space matrices A, B, C,
and D. State-space matrices describe the linear input-
output relationship as

z(t) = Az(t) + Bu(t) (7)
y(t) = Cz(t) + Du(t) (8)
The following Example illustrates the use of linmod
function. The input and outputs of the SIMULINK dia-

gram must be defined using Inport and Outport blocks
in place of the Source and Sink blocks.
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Example A.26

Obtain the state-space model for the system repre-
sented by the block diagram shown below. The model
is saved with a filename simexa26.

s+2

_I_

Ok

In +

s+1

Sum1

Controller

20

s24+10s+16

w |

%_

Plant

Gain

—
©

(1)

Out

Run the simulation and to extract the linear model of
this SIMULINK system, in the Command Window, en-

ter the command
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[A,B,C,D] = linmod(’simexa26’)
The result is

A = B =
0 0 0 20 0
-1 -1 0 0 1
-1 1 -10 -56 1
0 0 1 0 0
C =
1 0 0 0
D =

In order to obtains the transfer function of the system
from the state-space model, we use the command

[num, den]=ss2tf(A, B, C, D)
the result is

num =
0.0000 0.0000 0.0000 20.0000 40.0000
den =
1.0000 11.0000 66.0000 76.0000 40.0000

Thus, the transfer function model is

20s + 40
s+ 1153+ 6652+ 765 + 40

T(s) =

132



Once the data is in the state-space form, or converted
to a transfer function model, you can apply functions
in Control System Toolbox for further analysis:

e Bode phase and magnitude frequency plot:
bode(A, B, C, D) or bode(num, den)
e Linearized time response:

step(A, B, C, D) or step(num, den)
1sim(A, B, C, D) or lsim(num, den)

impulse(A, B, C, D) or impulse(num, den)
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SUBSYSTEMS AND MASKING

SIMULINK subsystems, provide a capability within
SIMULINK similar to subprograms in traditional pro-
gramming languages.

Masking is a powerful SIMULINK feature that enables
you to customize the dialog box and icon for a block
or subsystem. With masking, you can simplify the use
of your model by replacing many dialog boxes in a
subsystem with a single one.
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Example A.27

To encapsulate a portion of an existing SIMULINK model
into a subsystem, consider the SIMULINK model of
Example A.23 as shown, and proceed as follows:

5u(t)
j r3 | 1 |xz3 | 1 |22 | 1 |z |[ ]
— S S S
Step — Integ. Integ.1 | Integ.2 Scope
Sum
Gain1 1
Gain 5}
Gain2
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1.

5u(t)

Select all the blocks and signal lines to be in-
cluded in the subsystem with the bounding box
as shown.

. Choose Edit and select Create Subsystem from

the model window menu bar. SIMULINK will re-
place the select blocks with a subsystem block
that has an input port for each signal entering the
new subsystem and an output port for each signal
leaving the new subsystem. SIMULINK will as-
sign default names to the input and output ports.

IN10ut1 | — -]

1

Step

cope
Subsystem
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To mask a block, select the block, then choose Create
Mask from the Edit menu. The Mask Editor appears.
The Mask Editor consists of three pages, each han-
dling a different aspect of the mask.

e The Initialization page enables you to define and
describe mask dialog box parameter prompts, name
the variables associated with the parameters, and
specify initialization commands.

e The Icon page enables you to define the block
icon.

e The Documentation page enables you to define
the mask type, and specify the block description
and the block help.

In this example for icon the system transfer function is
entered with command

dpoly([10], [2 4 8 10])

A short description of the system and relevant help
topics can be entered in the Documentation page. The
subsystem block is saved in a file named simexa28.
Many interesting examples are available in SIMULINK
demo.
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Fourier Series

In the previous chapter, we expressed an input signal
as a weighted superposition of time-shifted impulses,
and we found that the output is given by a weighted
superposition of the impulse responses. The expres-
sion for the output was termed Convolution. the solu-
tion required the knowledge of the impulse response
and determination of the integral. A task that is not
always simple.

In this chapter, we consider approximating a periodic
signal as a weighted superposition of harmonically re-
lated sinusoidal signals. This is one of the interesting
parts of the famous Joseph Fourier thesis in 1807.

Fourier transform and analysis is widely use d in sig-
nal analysis and other fields. Fourier transform changes
a time-domain signal x(t) into the frequency domain
X (f), allowing the analysis in the frequency domain
with ease. To be studied in Chapter 4.
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Before presenting the general Fourier series, let us
see if we can represent a rectangular or a triangular
signal as a series sum of harmonically related sine or
cosine signals. To demonstrate this we consider two
examples from the textbook.

Example 3.1 (Example 3-1 Textbook) Consider the
partial sum of the following periodic signals.

1 1
x(t) =sinwgpt + 3 sin 3wt + 5 sin 5wot + - - -
> 1
= ) —sinnwpt  n isanodd integer
n=1"
where, Tp = i—g is the fundamental period.
The convergence of the series can be checked at any

point, e.g., at wot = g we have

T

T 1 1 1
=ty et =y

The convergence of the series to 7 can be checked
from the table of sum of series.
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We can normalize the above series to have a value of
unity at wpt = Z by multiplying it by 2, i.e.,

= 1 1
z(t) =—[sinwot + 5sin 3wot + gsin Swot 4 - - -]
7

4 X1 , ,
=— ) —sinnwpt  n isanodd integer
74 n—1 n
Let us write a few simple MATLAB statements to gen-
erate this sum and its plot for any given odd integer.

%hchs3_exl.m

n = input(’Enter an odd integer ’);

w_0t = 0:.01:2%p1;

x =0;

for k = 1:2:n;

x = x + 1/k*sin(k*w_0t);

end

x=4/pi*x;

plot(w_0t, x), xlabel(’w_0t, s’)
text(3.5,.7,[’Sum of ’, num2str(n),’ sine waves’])
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T T T T
1 1 1 1

0 1 2 4 5 6 7
T T T T

/\/ partial sum of 3 sine waves |
1 1 1 1

0 1 2 4 5 6 7
T T T T
1 1 1 1

0 1 2 4 5 6 7
T T T T

partial sum of 5001 sine waves |
1 1 1 1

0 1 2 4 5 6 7

wot, S
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Example 3.2 (Example 3.2 Textbook)
As the second example consider the partial sum of
the following harmonically related signals

2 1 1
(1) =—[sin wot — Esin 2wot + gsin Bwot— - - -]

2 @)
- —(- 1)n—SH1nth
T n—=1 n

We write the following commands

hchs3_ex2.m

n=input (’Enter the highest harmonics desired’);
w_0t = 0:.01:2%p1;

x =0;

for k = 1:1:n;

x = x + —-(-1)"k/k*sin(k*w_O0t) ;

end

x=2/pi*x;

plot(w_0t, x), xlabel(’w_0t, s’)
text(3.5,.7,[’Sum of ’,num2str(n),’ sine waves’])
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1 T T T T T T
partial sum of 1 sine waves

_1 | | | | | |

0 1 2 3 4 5 6 7

1 T T T T T T

/—/ partial sum of 3 sine waves
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Trigonometric form of Fourier Series

The trigonometric form of the Fourier series for a pe-
riodic signal x(t) is given as the sum of sines and
cosines of multiples of fundamental frequency wg

@) o
z(t) =ap+ Y ancosnwot+ >  bnsinnwot (1)

The problem is to find ag, an, and b, which are called
the Fourier series coefficients for a given periodic Sig-
nal. The constant term ag accounts for any dc offset

in x(t). To find ag, let us integrate both sides of the
synthesis equation (1) over one period of the (17).

/ w(t)dt=ao/ dt + a1/ COSwotdt—I-azf cos 2wot dt + - - -
To To Th

To

—I—b1/ Sinwotdt—l-bQ/ Sin 2wotdt + - - - (2)
To Th

Since the integral of sine and cosine over an integral
number of periods are zero and the integral of the first

termis ag1p, we find
1

ag = T—o - x(t)dt (3)
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To find a,, let us multiply both side of (1) by cos mwqt,
and integrate both side of (1) over one period of the

(To)-

(0e]
/ x(t) COS mwot dt = aO/ COS mwot dt + / ( E an COS nwot> COS mwot dt
To To To

n=1
+ / (Z b, sin nwot> COS mwot dt (4)
To \ p=1

The first and the third terms on the right hand side

are zero for all m, and n, and the second term is zero
for m %= n. Thus for m = n, the integral reduces to

/ z(t) Cos nwot dt = an/ cos? nwotdt = 2 / (1 — cos 2nwot)dt
2
To To To

:“—;To (5)
or
an = 3/ x(t) Cos nwot dt n # 0 (6)
1o /1o
Similarly
b = 3/ x(t) sin nwot dt n # 0 (7)
1o JTo

145



The Fourier series converges to the value of z(t) at
every point of continuity if z(¢) has continuous first
and second derivatives. For a periodic function with
discontinuity, the sufficient condition for pointwise con-
vergence is given by Dirichlet condition

1. x(t) is bounded.

2. x(t) has a finite number of maxima and minima
in one period.

3. z(t) has a finite number of discontinuity in one
period.

If x(¢) has discontinuity at a point, the Fourier series
converges to the mean of the limits approached by
x(t) from the right and from the left.

For nonperiodic signals if () is given over a finite in-
terval Tj, the Fourier coefficients can be used for z(t)
within the interval. Outside the interval the Fourier se-
ries represent the periodic extension of x(%).
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Example 3.3 (Example 3.3 Textbook)
A violin String, to be plucked by a musician, has the

shape shown
Y, incheos

X, inches

-9 0 9
The Fourier series coefficient of this triangular wave
are found to be

A
aoza, b, =0, foralln
4A
an=0, neven, ap=-—F— n #*= 0, & odd
TN

Write the first four nonzero terms for the Fourier se-
ries for |z| < 9. The ag and the odd harmonics are

05 1 4(0.5) 2
an — — = — a f— _—
0 2 4 ! 2 2
4(0.5) 2 4(0.5) 2
a3z = = as — =
3 Or2 o2 > 2 2572

Thus, for the interval |x(t)| < 9, we have

R 1 2 T 2 T 2 S5mx
= — — COS COS —
o) =g+ 5008 g T g 50083 T 555 9
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The following commands prompts the user for the high-
est odd harmonics and evaluates and plots y(x) for
—9<x<09.

Jchs3_ex3.m
n = input(’Enter the highest odd harmonics desired’);
O.5; T_0 = 18;
= 2xpi/T_0;
—9:.01:9;

IIOIII

Il
O

k =1:2:n;
y + 4xA/(pi~2xk~2)*cos (k*xw_0*x) ;
d
= A/2 + y;
plot(x, y), xlabel(’x, inches’), ylabel(’y, inches’)
axis([-9 9 0 0.5])
text(-3,0.04, [’Sum of ’,num2str(n),’ odd harmonics’])

A
W_
X
Y
for
y =
en
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0.4
(%]
203
e
0.2
>

0.1

0.4
203
=02
>

0.1

0.4
o
203
e
=02
>

0.1

0.4
o
203
e
=02
>

0.1

Sumlof 1 odd harmonics

-2 0 2
X, inches

Sumlof 5 odd harmonics,

-2 0 2
X, inches

Sumlof 11 oddI harmoniqs

-2 0 2
X, inches

Sumlof 45 odd harmonics

-2 0 2
X, inches
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Example 3.4 (Example 3-4 Textbook) Obtain the trigono-
metric Fourier series for the periodic square signal

shown.
A

t, S

0 Ty To
2

Since the signal has a zero average value, ag = 0.

T
2 (72 2 To
anp = —/ Acosnwotdt + — [, —ACOSnwotdt
TO 0 TO 70
" o To |
_ 2A|sinnwpt| 2 sinnwgt
- 10 nwo |g nwo |To
= 0 ) )

Note that the above expression resulted in zero, since

27
UJO—T—O
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1o
2 = 2 1o
by = —:/zAsmnwmdt+——/;-ﬁAgnmqﬂﬁ
1p /0 Ik 70

e} TO_
24 COS nwot| 2 +COSnwot
T nw nw Ty
0 | 0 o 0 12
2A
= —(1 —cosnm)
nm

or

nm?’

{ 44 5 odd
bn —
0O, neven

Thus, the Fourier series for the square signal of am-
plitude A with odd symmetry is

4 A 1 1
x(t) = —(sinwpt + gsin 3wot + gsin Swot + - - -
7T
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The following commands prompts the user for the high-
est odd harmonics and evaluates and plots x(t) for
A =1,and Ty = 1 second

%chs3_ex4.m
n = input(’Enter the highest odd harmonics ’);
A= 1; T_O0 =1; w_0 = 2*xpi/T_0;
t =0:.001:1;
x=0;
for k = 1:2:n;
x = x + 4%A/(kxpi)*sin(k*xw_O*t) ;
end
plot(t, x), xlabel(’t, s’)
text(.5,1.3, [’Sum of ’,num2str(n),’ odd harmonics’])
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Sum of 11 harmonics

Sum of 21 harmonics

Sum of 31 harmonics

0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1

Sum of 1001 harmonics

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
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Exponential form of Fourier series
Form the Euler's expression we have
1

1 . . - . '
COS nwot = E(ejnwot‘l'@_mwot) & sinnwot = ?(e]nw(’t—e_m“ot)
J

Substituting in the trigonometric Fourier series equa-
tion (1), we obtain

00 00
1 . . 1 . .
Jj(t) = ao _|_§ :Ean(ejnwot _|_ e—jnwot) _|_§ :ijn(ejnwot . e—jnwot)
n=1

n=1

> 1 . ' > 1 . o
=ap + g E(an — ]bn)em“ot + g E(an + jbn)e’ ot (8)

or in terms of a new complex constants, the above
expression becomes

()= 4+ X_ e J2W0l 4 x ,eIwot
+ X + X1elw0t  X5el2w0t ...
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Thus, the exponential form of the Fourier series is
given by

OO .
z(t) = ) Xpelnwol (9)
n=—oo
Now to find X,,, let us multiply both side of (9) by

e—J™wol and integrate over the period of z(¢). This
result in

o0
/ m(t)e_jmwot dt: ( Z Xnejnwot> e—jmwot dt
Ts T,

n=—-—oo

— Z Xn/ ej(n—m)wotdt
To

The term on the right hand side for m #* n repre-
sent the average sum of sine and cosine terms over a
period which is zero. For m = n, we have

/ z(t)e IOt gt = Ty X,
Ty

Solving for X, we have
1

X =—/ t)e~Imwol gy 10
n Ty Tox( )6 ( )
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The exponential Fourier series coefficients were re-
lated to a,,, and b, from

1 :
. s(an — jbp), n >0
Kn = { %(an + jbn), n <O a)

Xo = ag

The computation of the coefficients of the exponen-
tial form is considerably easier than the trigonomet-
ric form. Furthermore, the exponential Fourier series
provides us with a direct means of plotting two-sided
amplitude and phase spectra of a signal.
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Example 3.5 (Example 3-5 Textbook) For the next
example we consider the train of rectangular pulses,
kKnown as pulse train as shown

n x(t)

_TO —0 To QTO ¢

2 2

This is an important signal, the clock signal in a digital
computer is a pulse train. Also, the amplitude modu-
lated signal in communication systems is a pulse train.

Find the coefficient of the complex exponential Fourier
series for the pulse train signal shown above.

From (10), X,, is

1 3 |
Xp=— [% Ae~ ™ot g4 (12)
1o 77

—A

. " T
— e ~JNWo 2

- jnwoTo >
2 A [ejnon/Q _ e—JnwoT/2

23

] n #= 0

- nwolp
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or

2A .
Xp = Sin nwoT/2
nwolp
Substituting for wg = 27 fy, we get
X, — A sinmn for
To mnfo

Multiplying numerator and denominator by 7

__ Arsinmn for

n

- 1o mnfoTr
The signal sinc(t), defined as

sin(mt)

Tt
is encountered in many applications is known as Gaus-
sian and Lorentzian function Thus in terms of this sig-
nal X, becomes

sinc(t) =

A
Xn = —Tsz'nc(nfoT)
Iy

Note that from (12) forn = 0, Xg = %
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Example 3.6 (Example 3-6 Textbook)
Find the coefficient of the complex exponential Fourier
series for a half rectified sine signal, given by

(1) = Asinwot, 0<t <L
v B 07 %StSTO

From (10), X, is

To

1 2 .
X, =— / Asin wote_anot dt
To Jo
A T | |
— : / (ejwot _ e—jwot)e—jnwot dt
2570 | Jo

To To

— A /? ejwo(l—n)t dt — /? e—jwo(1+n)t dt
2770 |Jo 0

A - j(1—n)m __ 1 j(14n)mr 1
_ [6 ¢ ] n# +1

 4x 1—n T 1+n

Note that
eI T — cos(1 £ n)r + jsin(l £ n)r = —(=1)"
Therefore, we have

0, n odd, n #= £1
X,=1¢ 215, n=0,£2,44,,.--(n = even)
4%, n=+1  (see below)

The case for n = 41 was obtained separately as follows.

159



For n = 1,from (10), we have

A
2 To
A
2iTo
A
4y

X =

To
2 . . .
/ (ejwot o e—jwot)e—jwotdt
0

/2 (1 — e 72@h)
0

Similarly, for n = —1, we find X; = —4%..
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We use the following commands to evaluate the Fourier
series for the half-rectified sine signal

Jchs3_ex6.m
n = input(’Enter the highest even harmonics ’);
A= 1; T_O0 =1; w_0 = 2xpi/T_0O;

t =0:.001:1;
m= [-n:2:-2, -1, 0, 1, 2:2:n];
p = length(m);
x= 0;
for k = 1: p
if m(k) == | m(k) == -1
X_n = A/(4*m(k)*j);
else
X_n = A/(pi*x(1-m(k)~2));
end
x = x + X_nxexp(j*w_0*m(k)*t) ;
end

%» we plot the real part of x to eliminate the

%» small imaginary part due to computational error
plot(t, real(x)), xlabel(’t, s’)

text(.55,1.0,[’Sum of ’,num2str(n),’ even harmonics’])
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0.5

0.5

0.5

Sum of 4 even harmonics

1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 5 0.6 0.7 0.8 0.9
t, s
T T T T T T T
Sum of 8 even harmonics
1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 5 0.6 0.7 0.8 0.9
t, s
T T T T T T T
Sum of 12 even harmonics
1 1 1 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9
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Half-wave Symmetry
Half-wave symmetry is defined for periodic signals. A
signal is half-wave even symmetrical if

1o
t+— ) = x(t
x( 2 ) “(t)
A signal is half-wave odd symmetrical if

x (t + %) = —x(t)

For example, the triangular wave with the period T
as shown is a half-wave odd symmetrical signal, since
the amplitude of the signal at any time ¢t = « and at
t=ax % differ only in sign.

A
\‘“F%
an?o/'/ To i

—A
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Simplification for Fourier series coefficient due to
signal symmetry

The evaluation of the coefficients are simplified due
to signal symmetry. For a real signal, we have the
following properties

Signal Signal Xn an, & by
Symmetry|property coefficients |coefficients

Even xz(t) = x(—t) Real b, = 0, forall n

Odd z(t) = —x(—t) |Imaginary a, = 0, forall n
Half-wave |z (t + 2) = x(¢t) |Complex an, = b, = 0, n odd
even X, = 0,n odd

Half-wave |z (t + 2) = —a(t) Complex an, = b, = 0, n even
odd X, = 0,n even
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Example 3.7

Obtain the trigonometric Fourier series for the even periodic square

signal shown.

T t, S

Since the signal has a zero average value, ag = 0. Also, since

the signal is even, b,, = O.

Ip

37p

2 [+ 2 [T+
a, = — A cosnwot dt + —/ — A COS nwot dt
To J_n To Jn
_ 2A |sinnwg o Sin nwo =
Ty nwo |-n nwo |n
4A | nw
= —sin—
nm 2
Exponential coefficient X,, = L (an — jbn) = Layn, or
%, n=41,45,---
X, = ﬁ n=+3,47,---
0, n even

Thus, the Fourier series for the even square signal is

4 A 1 1
z(t) = —(coswot — 3 €08 3wot + = Cos Swot — - - -
T
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Example 3.8 (3-7 Textbook)
Find the exponential Fourier series for an odd periodic square
signal.

Consider the even periodic square signal of Example 3.7. Clearly,

a time shift of 7o = % will result in an odd periodic square sig-
nal.The exponential FS coefficients of a signal x(t) is

1 |
X, = —/ z(t)e "0t gt
TO To

If the signal goes through a time-shift of g, then its exponential
FS coefficients denoted by Y, is

1 .
= —/ x(t — m0)e I"ldt
To J1,

With a change of variable in the integral, we find

Yn

- 2n7TQ

Y, = X,e ' %

Thus, exponential FS for the odd periodic signal in terms of the
even square periodic signal coefficients using ro = %, becomes

_gnm . . nhm
Xn,odd = (6 J 2) Xn,even = <—j SN ?> Xn,even n odd

where X, cven, Was found in Example 3.7.
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In Example 3.7 for an even periodic square signal, we
found

1 2A nm
Xn = —ap = —Sin —
" Qan nm 2
Thus, from the result of Example 3.8, for an odd peri-
odic square signal, the complex Fourier coefficients is

given by

. o nm\ 2A . nm
Xn = | —7SIn Sin —
2 /) nm
A
= —7—(1 — cosnm)
nm

In Example 3.4, for the odd periodic square signal we
found an = 0 and b, = 22(1 — cosn), which will
result in the same complex coefficients, using X,, =
%(an — jbn).
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Parseval’s Theorem
The average normalized power of a periodic signal
x(t) is given by

1

1
P, = — Qtdt:—/ £)z* () dt
w = Tolw ()] T TO:U( )™ (t)

Replace x*(t) by its Fourier's series expression

1 o0 )
=_— D Y Xpe 7m0t dt
T, /Tox( ) ( n® )

n=——00
= > X (—/ x(t)e_an0t> dt
n——o00 1o /Ty
o0 0
= Y XiXn= Y |Xul?
n=——o0 n=——oo
2 - 2
n=1

Therefore, the average power of a periodic signal can
be found by its Fourier’series components, namely its
frequency spectrum X [n].

168



Example 3.9 (Example 3.8 Textbook)

Consider the sine wave z(t) = 4sin50xt. Find the
average power of the signal using z(¢), and from its
two-sided frequency spectrum.

50 1
fo=—=25 Hz = Ty5=— =0.04 second
2 25

1 To 5 1 0.04 -, 16
P=_— lx(t)|“dt = —— 16sin“50ntdt = — =8 W
TO 0 004 0 2
To find the frequency spectrum we transform x(¢) into

cosine signal, i.e,
x(t) = 4sin50nt = 4 cos(507t — g)

The double-sided spectrum is as shown.
Amplitude

.

—25 0 25 f
Double-sided spectrum

From Parseval’s theorem, the average power is

P=(2)"+(2)*=8 W

169



Line Spectra

We have seen that a cosine signal can be represented
by the sum of two counter rotating signals, These pha-
sors are characterized in the frequency domain by
their amplitudes versus frequency and their phase an-
gle versus frequency, known as two-sided amplitude
spectrum and phase spectrum.

Since each Fourier’s series coefficient of a signal is
associated with a complex sinusoid of a harmonically
related frequency, these coefficients can conveniently
be presented in the frequency domain by their ampli-
tude and phase spectra. These discrete signals are
called line spectra. Plot of the exponential form X,
and 6, for all =n are called the two-sided line spec-
tra.
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Example 3.10
Plot the two-sided line spectra for the Fourier’s series
coefficients of the half-wave rectifier of Example 3.6.

The complex exponential Fourier's series of the half-
wave rectifier were found as

(0, n odd, n #= +1

Xp = ¢ %1_17)/2, n=0,+2,4+4,,.---(n = even)
A’ n=4+1
. aIn

Evaluating the above coefficients for A = 1, and Ty =
1.n=0,%x1,4+2,+4, +6, results in the line spectra
shown.

©
N

Amplitude spectru
o
9\ [\
@ L K L .
_O S L _
IS
+€) .
—o
L o

O)

4 xl

Phase spectrum
o
©)
@)
—o
O
©
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MATLAB statements for plotting the line spectra of Ex-
ample 3.10.

%chs3_ex10.m

A= 1; T_.O0 =1; £f_0 = 1/T_0;

nf=(0:1:6)*f_0;

m=length(nf) ;

X = zeros(l,m)+j*zeros(1l,m);%Set X for all nf to O

X(1) = A/pi; % X for nf =0

X(2) = A/(-j*4); %» X for nf =1

for k=3:2:m % X for even nf
X(k) = A/ (pi*x(1-nf(k)"2));

end

Xf = abs(X); Xtheta = -angle(X);

nf_2 = [-nf, nf];

Xf_2 = [Xf, Xfl; % 2-sided amplitude spectrum
Xtheta_2=[-Xtheta, Xthetal;’ -sided angle spectrum
subplot(2,1,1), stem(nf_2, Xf_2, ’r’), grid,
xlabel(’f, Hz’), ylabel(’Amplitude spectrum’)
subplot(2,1,2), stem(nf_2, Xtheta_2, ’m’), grid,
xlabel(’f, Hz’), ylabel(’Phase spectrum’)
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Example 3.11
Plot the two-sided line spectra for the Fourier's series
coefficients of a pulse train with time delay ¢;.

In Example 3.5, the complex exponential Fourier’s co-
efficients for the pulse train were found to be

A
Xn = T—Tsz'nc(nfOT)

0
If the pulse train is time-shifted by ¢q, the coefficients

become (See the relation Y;, = X, e—72n7foto found
in Example 3.8)

A
Xn = T—Tsz'nc(nfoT)e

0
The file ch3_ex11.m evaluates X,,, and plots the line

spectra for the pulse train. The user is prompted to
enter the pulse amplitude A, the pulse width r, period
To, and the time delay tg. Running ch3 ex11 for A =
1,7=0.25,Ty = 1;and tg = 7/2, results in

—12nmn foto
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Amplitude A =1
Width tau = .25
Period T_0 =1
Time delay t_0 = .25/2

0.25 S
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MATLAB statements for plotting the line spectra of Ex-
ample 3.11.

hchs3_exll.m

disp(’Line Spectra for a pulse train:’)
disp(’Amplitude A, width tau, period T_0, & time delay t_0’)
A = input(’Amplitude A = ’);

tau = input(’Width tau = ’);

0 = input(’Period = ’);

0 = input(’Time delay t_0 = ’);

_0=1/T_0;

n=(0:1:8xT_0) ;

= Axtau/T_O*sinc(n*f_O*tau) .*exp(-j*2*xpixnxf_0*t_0);
Xf = abs(X); Xtheta = angle(X);

nf_2 = [-nxf_0, n*xf_0];

Xf_2 = [Xf, Xfl; % 2-sided amplitude spectrum
Xtheta_2 = [-Xtheta, Xthetal; % 2-sided angle spectrum
subplot(2,1,1), stem(nf_2, Xf_2, ’r’), grid,
xlabel(’f, Hz’), ylabel(’Amplitude spectrum’)
subplot(2,1,2), stem(nf_2, Xtheta_2, ’m’), grid,
xlabel(’f, Hz’), ylabel(’Phase spectrum’)
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Steady-state response of a LTI system to a peri-
odic input

We have seen that the response of a LTI system to
a sinusoidal signal of frequency w rad/sec is a sinu-
soid of the same frequency, but different amplitude
and phase dictated by the frequency response trans-
fer function, i.e. for the sinusoidal signal xq(t) =
A cos(wt), the steady-state sinusoidal signal is

yss(t) = A|H (w)| cos(wt + 0(w))
or in terms of the rotating phasor Ael¥t we have
yss(t) = AH(w)el*?

In the previous chapter we found H(w), as

H(w) = /_OZO h(t)e T9tdt

We shall see that the above integral is the Fourier
transform of the impulse response.
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Using the superposition, we can extend the steady-
state response to a periodic signal with complex Fourier
coefficients X,,, as

0. @)
y(t) = Z X H (nwg)el ™ot

nN=—-—oo

In polar form H(w) = A(w)el?W) the steady-state
response to a periodic signal represented by its Fourier
coefficients X,, becomes

y(t) = XoH(0) + Z 2| X | A(nwo) cos[nwot + L X, + 6(nwo)]

n=1
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Example 3.12 (Example 3-10, 3-11 Textbook)

An odd rectangular signal represented by its complex
Fourier coefficients is applied to the low pass RC filter.
Obtain the output response, plot the input and output
signals, and their amplitude phase spectrum.

The Frequency Response Transfer Function of the low
pass RC circuit is
1
14+ jwRC
and from Example 3.8, the Complex Fourier coeffi-
cients are given by

A
Xn =—7—(1 — cosnm);
nw

The response spectrum is
Yn = H(nwo)Xn
and the output response is

H(w) =

OO .
y(t) = > XnH(nwg)el ™0

n—-—oo
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We use the following commands

RC = input (’Enter the filter time constant RC = ’);

n = input(’Enter the highest odd harmonic n = ’);
A=1; TO=1;, f_.0=1/T_0;
t=0:0.001:1;
w_0 = 2xpixf_0;
x = 0; y=0;
m =0; H=0; X_n=0; Y_n=0;
for k = -n:2:n
m=m+1;

H(m) = 1/(1 + j*w_0*k*RC);

X_n(m) = -j*A/(kxpi)*(1 - cos(k*pi));

Y _n(m) = H(m)*X_n(m) ;

x = x + X_n(m)*exp(j*k*xw_0*t) ;

y =y + Y_n(m)*exp(j*k*xw_0*t) ;
end
nf_ 0 = [-n:2:n]*f_0;
subplot(3,1,1), plot(t, real(x), ’b’, t, real(y), ’r’)
xlabel(’t, s’)
title([’Low Pass RC Filter, RC = ’, num2str(RC),...
’s, Max. Harmonics = ’, num2str(n)])
legend (’ Input signal’, ’Output signal’)
subplot(3,1,2), stem(nf_0, abs(X_n), ’b’)
ylabel (’Amplitude’), legend(’Input spectrum’)
subplot(3,1,3), stem(nf_0, abs(Y_n), ’r’)
xlabel(’nf_0, Hz’), ylabel(’Amplitude’)
legend (’Output spectrum’)
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Low Pass RC Filter, RC = 0.2s, Max. Harmonics = 27

2 T T T T T T T T
1 —— Input signal s
Output signal
0
-1
_2 | | | | | | | |
0 0.1 0.2 0.3 0.4 5 0.6 0.7 0.8 0.9 1
t,s
0.8 T T T T T
0 0.6F ® Q o Input spectrum | _
E
= 041 -
£
<o0.2F T T -
0 QOQ@|®@@@Q|@?? ! ??@|Q@Q@@|®®OC}
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o 03F O Output spectrum | |
E
= 02F -
£
<01 1
0 r\mmr\lmr\r\ﬂﬂlﬂ(ﬁ@? 1 ?Qmﬁlﬂﬂmﬁr\lr\mmm
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nfo, Hz
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Distortionless Systems

A continuous LTI system described in terms of its fre-
quency response is said to have distortionless trans-
mission if the output signal is an exact replica of the
input signal, except for

e A possible scaling of the amplitude
e A constant time delay
The frequency response transfer function of a distor-
tionless system is
Hy(w) = Ke 7%

Therefore, the amplitude response is the same for all
the frequency components of the input, and phase re-
sponse is a linear function of frequency. The signal
x(t) is transmitted through the system without distor-
tion, and the output is given by

y(t) = Kx(t — 70)

where K is the scaling factor, and j is the time delay.
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Example 3.13 (Example 3-12 Textbook) An system
has idealized frequency response transfer function as

shown.

0
[ H(w)] 4 .
2 T 2

|

|
I I —éOW I
| | w |

~407=20% 0 207 40%

Determine the response for the following input

1. 21(t) = 2cos10nt+ sin12xt
2. x5(t) = 2cos10xnt 4 sin 267t
3. z3(t) = 2cos26nt + sin 34xt

From the FRTF response, we have

l —407m < w < —207
| Hw)|=(¢ 2 —207 <w <207
1 20m < w <407

5 w < =307
O(w) = _61_0"” —307 < w < 307
-5 w < 307
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0(w) at frequencies of the input signals are

1 T T

9(107) = ——(107) = ——. O0(12%7) = ——
(10m = —g5(10m) = 5, 00120 =
T T

(267) = —(26m) = ——, 0(34m) = 2

The steady-state response for the given inputs are

1. y1(t) :4cos(107rt—g)—|—25in(127rt—g)
1 1
—=4cosl10n(t — — 2sin 127 (t — —
- g 282 )
2. yo(t) = 4cos(10wt — z) + sin(267nt — —W)
6 30
— 405 107m(t — =) + sin 26m(t — )
- 60 60
13
3. y3(t) = 2cos(26mt — 3—5) + sin(34rt — g)

1 1
— 2C0s26n(t — — sin 34n(t — —
7( 60) + 7 ( 68)

For a distortionless system, y(t) = Kxz(t—71g). There-
fore, we can see that only input z1 (%) is passed with-
out distortion. The system produces amplitude distor-
tion on z»(t), and phase distortion on x3(t).
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Exercise (p.133 ) The frequency response transfer function of
the second-order low-pass filter is given by

w2

H(w) = =
() wCQ—wQ—I-j\/iwcw

(a) We find the amplitude and the phase angle to be

L\ 4 ;
Alw) = ll—l— (w_> ]

~1 V2(w/w.)

— tan w < w
— 1-w?/w? ¢

O(w) = B 1 V2(w/w.)
7 + tan 1 W > We

(b) w. = 600 r/s and input is a square signal with FS given by
(3-25) with wg = 2007 r/s. Obtain the attenuation and phase
shifts introduced by the filter in the first 3 terms of the FS.

The FS of the square signal contains odd harmonics, and | H (w)]|,
and 6(w) for the first 3 harmonics are

1

2007\ *| °
H(2007m)| = |1 = 0.994
|H(200m) +(6OOW>]

i 3 % 2007\ 4]
|H(3 x 2007)| = |14+ (22227 — 0.707
6007

5 x 2007\ *
|H(5 x 2007)| = |1 + (22257 — 0.339
6007

N =
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2007

6(2007) = —tan~?! 0001 — _27.9°
1 — (20071‘)
6007w
6(6007) = —tan" !t oo = —90°
2 10007
6(10007) = —7 4+ tan! 000r _ — _127°
(%ﬁ?ﬁ> -1

We use the following commands to plot z(¢) and y(t).

A =1; omega_0 = 200*pi;
t=0:.0001:.01;

x = 4%A/pi*(sin(omega_0*t) + 1/3*sin(3*omega_O*t)+. ..
1/5*sin(5*%omega_0*t)) ;

y=4*A/pi* (0.994*sin(omega_Oxt-27.9%pi/180)+1/3%0.707*sin. ..
(3*omega_O*t-pi/2)+1/5%0.339*sin(5*omega_O0*t-127*pi/180)) ;
plot(t,x , t, y)

legend (’input’, ’output’)

1.5

0 0.002 0.004 0.006 0.008 0.01
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Rate of Convergence of Fourier Spectra

The Fourier series coefficients X, for a periodic func-
tion x(¢) always decrease in magnitude with the in-
crease in the harmonic index n. It can be shown
that for sufficiently large n, the Fourier coefficients ap-
proach zero with a convergence rate of 1 /n*. where k
is the number of times x(t) is differentiated before the
appearance of an impulse in the derivative. A large
k implies a faster convergence and fewer terms in the
truncated Fourier series. For example, the square and
sawtooth waves produce impulse at the first deriva-
tive, and have convergence rate of 1/n. Whereas,
the half-rectified sine , and trapezoidal signals need
two derivatives before producing impulses, and thus
have a convergence rate of 1/n?.
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Example 3.14
One pulse of a periodic signal is defined by

@)
n=——00
where
1 1 1
zp(t) = cos’mt = 5(1 + cos2mt) -5 <t< =

Find derivatives of x,(t), until it would yield an im-
pulse.
xp(t), up to its third derivatives are shown below

x = 1/2(1 + cos2nt)

1/2 0 1/2

dx/dt = — msin2nt

2 42 _ o 2
d°x/dt® = —2n“cos2nt R ﬂ

dx/dt® = 2n28(t+1/2) + 4nsin 2t — 27°5(t-1/2)

|

L

The impulse appears at the third derivative. Thus, the
Fourier coefficients have a convergence rate of 1 /n3.
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Fourier Transform

In the previous chapter, we expressed a periodic sig-
nal as a weighted superposition of harmonically re-
lated sinusoidal signals. However, many signals in en-
gineering are aperiodic and signals of finite duration.
We obtain the Fourier transform by first considering
the Fourier series for periodic signals, which was de-
fined in exponential form as

m .
Z Xne]nQWfot

x(t) =
nN——oo
1 2
— —9in2 t
Xn = TO/TO z(t)e In2mfot gy
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Consider the pulse train signal of width 7, and pe-
riod T shown below, and see what happen as period
gets longer and longer and finally grows to infinity as
shown in Figures (b) and (c).

(a) - T “—

(b) —> T :%

t

(c) To> e

The signal in (c) is never repeated and can be consid-
ered as a pulse signal of finite duration. As Ty — oo,
the spacing between harmonics goes to a differential
and becomes infinitesimally small, and fo = Tio ap-
proaches df, nfy, becomes a continuous variable f,
and the summation in the Fourier series becomes in-

tegral, i.e.,
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o) = [ X(De?mItaf (1)

— 00
We express Xy, in the form
Tg
To X, = /_ 7 w(t)e In2mot gy
-
As Tp — oo and X,, — 0, the spectrum becomes
continuous and lim, _, o To Xn is shown by X (f)

x(H=|

— 00

o

z(t)e 27Tt gt (2)

Equation (2) defines the Fourier transform, and Equa-
tion (1) the inverse Fourier transform which applies to
continuous aperiodic signals. They are written as

Fla()) = X(f) = /_OO 2(£)e 927t gy

0@

FHX(DY =) = [ X(el>tas

Together they are called a transform pair and are rep-
resented in short hand notation as

z(t) <2 X(f)
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Example 4.1 (Example 4-1 Textbook)
Determine the Fourier transform for

(a) The even rectangular pulse z,(t) = I‘I(%t)
(b) The odd rectangular pulse

rp(t) =N (24 1) -n(2-1)

(a) Since I‘I(%t) is zero outside ¢ = =5, the Fourier
transform of x4 (¢) becomes

eJTTl —e7i™Tl sinmTf

Xa(f) — /2 6_j27rftdt: =

= j2rf wf
— TSIﬂi:}'f) = 7sinc(tf)

(b)
o .
Xb(f)Z/ e_]%ftdt—/ e 127ty
_z 0

— ];;f [2 — (ejwf + e_jwf)] = Wif[l — cosnTf]
2 sin?(nif) 2 L
e R
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We use the following commands to plot the even and
odd rectangular signals (Amplitude 1 and - = 2), and
the amplitude and phase angle of their Fourier trans-
forms.

t=-2:.001:2;

tau=2;

x_a = pls_fn(t/tau);

f =-2:.001:2;

X_af = tauxsinc(tauxf);

subplot(4,3,1), plot(t, x_a, ’r’)
text(-.5, .7, ’Even’)

subplot(4,3,2), plot(f, abs(X_af), ’r’)
title(’ [2sinc 2f|’), ylabel(’Amplitude’)
subplot(4,3,3), plot(f, angle(X_af), ’r’)
ylabel(’Radian’)

x_b = pls_fn(2*xt/tau + 1/2)- pls_fn(2*t/tau - 1/2);
X_bf = j*tau~2/2*pix*f.*sinc(tau/2*f)."2;
subplot(4,3,4), plot(t, x_b, ’m’)
xlabel(’t, s’), text(.5, .7, ’0d4d’)
subplot(4,3,5), plot(f, abs(X_bf), ’m’)
xlabel(’f, Hz’), title(’|2\pif sinc~2f]|’)
ylabel (’Amplitude’)

subplot(4,3,6), plot(f, angle(X_bf), ’m’)
xlabel(’f, Hz’), ylabel(’Radian’)
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The result is

|2sinc 2fl
1 2 4
Even g5 _3
2 ]
0.5 = 5 2
£ &
<05 1
0 0 0
-2 0 2 -2 0 » 2 -2 0 2
|2nf sinc“fl
1 1.5 2
Odd
0.5 ) 1
- 1 c
= S
0 = S 0
€05 i
RAVE RYA\RS
-1 0 -2
-2 0 2 -2 0 2 -2 0 2
t, s f, Hz f, Hz

The square pulse (digital pulse send in a communica-
tion channel) and its Fourier transform the sinc func-
tion play important roles in signal and system analy-
sis.
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Energy Spectral Density In Chapter 1 the normal-
ized energy of a signal was defined as

E = /_0:0 (1) 2dt = /_0:0 2 () (t)dt

Writing () in terms of its Fourier signal
E= / z*(t) [/ X(f)eﬂ”ftdf] dt
—/ X (f) Uooa;(t)eﬂ”ftdt] df
= [ x(xrndr = [ 1xX(DPdr

Assuming z(t) is a voltage signal, on a per ohm basis
| X (f)|? has the unit of W-s/Hz or J/Hz, i.e., energy
density with frequency, and we define

G(f) =|X(f)I?

as energy spectral density which describes the distri-
bution of signal energy over the frequency spectrum.
The above integral over all frequency represent the
total energy contained in the signal.
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Example 4.2 (Example 4-2 textbook)
§a; Find the Fourier transform of z(t) = e~ **w(t)

b) Using the energy spectral density find the total en-
ergy of the signal. which should be £ = % as found
in Example 1-11(Text).

(c) Use MATLAB Symbolic Math feature to obtain the
analytical expression for X (f), and G(f) for oo = 2.

X(f) =/ z(t)e 72t = / e~ Me=I2m Ity
—00 0
0 1

_ 1 —(ats2mp
0 a—+ j2nf

~ a+j2nf
(b) The energy spectral density is
1
— 2 __
G(f)=|X(NHI" = o2 + (2n])2

'Energy contained in the signal within —B < f < B
IS

B
1 2
Ex :/ i letv= 2"
_pa?+ (27 f)? o
1 [ dv 1. _,2nB
= — = —tan —
Ta Jo 1412 7w« Q

As B — oo, E = % same as in Example 1-11(Text).
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We use the following commands

%» Example 4.2

syms t w f %» Define symbolic variables
x = sym(’exp(-2*t)*Heaviside(t)’) % Create the signal
X = fourier(x) % Fourier transform

Xf=subs(X,’w’,sym(’2*pi*f’))%Change w r/s to f=w/(2*pi)Hz
Xf_conj=subs (Xf,’f’,sym(’-f’)) % Conj. Fourier transform

Gf = symmul (Xf, Xf_conj) %» Energy Spectral Density
ezplot (Gf) %» Use ezplot to plot energy spectrum
The result is
x = exp(-2xt)*Heaviside(t)
X =
1/ (2+1i%*w)
Xf =
1/ (2+2*i*pix*f)
Xf_conj =
1/ (2-2%i*pixf)
Gf =

1/ (2+2%i*xpix*f) / (2-2%i*pix*f)
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1/(22 + (2 1 1)?)

G(f)

1 1
AN ty -
o . o

0.25
0.05

o
Ausua( jesyoadg Abisug

1.5

0.5

-0.5

f, Hz
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Condition for the existence of Fourier transform
The sufficient condition is similar to those given for
Fourier series.

1. x(t) must have a finite number of maxima and
minima
2. x(t) must have a finite number of discontinuity

3. z(t) must be absolutely integrable
o |x(@)|dt < 00

From the last condition, we may say that any signal
that meets the condition

@) 2
E = / lx(t)|“dt < oo
— OO

Is absolutely integrable. As you know any signal that
has finite energy is known as energy signal. Energy
signals generally include nonperiodic signals that have
a finite time duration, or any signal that approaches
zero as t approaches infinity, such as z(t) = e~ L.
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Many signals in electrical engineering are not energy
signals, such as step signal and all periodic signals
and do not meet the Dirichlet condition. It can be
shown that signals that have infinite energy, but con-
tain a finite power, i.e., power signals do have a valid
Fourier transform. We have seen that the average
power of a power signal is
: 1 T 2
P = tll)ngoﬁ/_Th:(tN dt < oo

The average power is often used to describe the strength
of the communication signals. A general characteris-
tic of the power signal is that their Fourier transform
contain impulse functions.
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Fourier transform of an impulse

Fourier transform can be extended to apply to an im-
pulse function. Consider the delayed impulse signal
of strength A given by

z(t) = A5(t — to)

The Fourier transform is

X(f)=FL{AS(t — to)} = /_OZO AS(t — tg)e 327 gy

— Ae—jzﬂ'fto

where in the above integral we made use of the sifting
property of an impulse. Thus,

X(f) = F{AS(t — tg)} = Ae 9270
For unit impulse function occurring at origin, tg = 0
X(f)=Fo@®)}=1
or in mathematical notation, we write

5(t) <2 1
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Now let us consider an impulse function in the fre-
quency domain

X(f) =46(f - fo)
The inverse Fourier transform of this function is given
by

o()=F o — fo)} = [ 8(f = fo)el>™I1af

— )27 fot
Thus, we have
z(t) = FH8(f = fo)} = eI2mIo!
or

el2mfot Ly 5(f — #0)
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Fourier Transform Theorems (Properties of the Fourier
transform)

Fourier transform has several properties that are use-

ful for obtaining additional Fourier transform.

Linearity (superposition) Theorem

Because Fourier transform and its inverse involve in-
tegral operation, principle of superposition applies, i.e.,
given

p1(t) <2 X1(f) and zo(t) < Xo(f)

then

la121(t) + aoma(t)] <2 [a1X1(f) + asXo(F)]
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Example 4.3
Using the Linear property find the Fourier transform of

x(t) = Acos2nfpt.

Writing x(¢) in terms of the counter rotating phasors

A o .
Acos2mfgt = > [GJQWfOt + e—JQWfot}
we have

F{Acos2n fot} = g[}"{ej%fot} + F{e I2mfoty]

A

=210 — Jo) + (S + fo)]

or

A
A cos 27 fot <1 S8 = f0) + 3¢ + fo)]
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Time-Delay Theorem
Given

2(t) <= X(f)
then

2(t — tg) <2 X (f)eI2fto

Example 4.4(Example 4-4 Textbook)

Obtain the Fourier transform of a unit-high square pulse
2 unit wide starting att = 0.

This signal can be obtained from x,(¢) of Example
4.1 by delaying it by tg = 5 = 1 unit of time. Apply-
ing the time-delay theorem to the Fourier transform of
xq(t), we get

X (f) =7sinc(rf)e I2mfto
= 2sinc(2f)e 1277
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Scale Changing Theorem

Given (1) <X X(f)

then, x(at) PR ﬁX(g)

To prove this, from the defining integral

Fla(at)} = [

— 00

0@

z(at)e I2m gt

For >0, substituting 7=at, then dr=adt, we have
/

F{x(r)} = l/OO x(T)e_jQWETdT

a J—oo

or we can write

Fla(a} = -x(1)

Replacing + by |71| makes this relation applicable for
both positive and negative value of a.

Fla(at)} = ﬁX( )

Compression in one domain leads to a stretching and
an amplitude reduction in the other.
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Example 4.5
Consider the FT pair

_ F 1
t) = e tu(t) <
o(6) = e tu(®) ¢ 1
Scaling z(t) to z(at) for o > 0, gives
1 1 1

z(at) = e Yyt <i>— —
(at) () al—l—j§ o+ Jw

Example 4.6
In Example 4.1, the FT of the signal x,(t) was found

zq(t) =T (;) PN Tsinc(Tf)

Scaling for a = 5, we get

zo(at) = M (é) L 2sine(2f)
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Duality Theorem
The FT and IFT were defined as

X(f) = / Te@®e M dt ot) = / T X(p)e

interchanging ¢ with f, results in

X(t) = /OO z(f)e 271t gf z(f) = /OO X (t)el?m It qy

In order to maintain the same form in the kernel, we replace t
by —t in the first relation and f by — f in the second relation, we
obtain

X (—t) :/oo c(f)e’?™ Tt df  z(—f) :/_oo X (t)e 7%t qy

From the above we see that
it x(t) < X(f), thenX () <2 z(—f)

: F
For even function, we use t +— f.
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Example 4.7(Example 4-7 Textbook)
Given the transform pair

o(t) =T <3> s rsine(rf) = X(f)
T
We replace f in X (f) by ¢ to get the new time function

X (t) = tsinc(tt)

Then, from the duality theorem, the FT of this new

time function is
— I (__f>
t——f T

t
2(H=n(-)
~
Let W = 5, and since the signal is even T1 (%f) =
M (L), we get

W sine(2Wt) <2 T (i>

2W
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Frequency Translation Theorem
The frequency translation theorem is stated mathe-
matically as

z(£)el2 ot Ly X (f — fo)

This means that multiplication by exponential in time
domain corresponds to translation in frequency do-
main.

Example 4.8 (Example 4-8 Textbook)
(a) Find the FT of

t .
azl(t) — I (_) 9207t
2
We know that
t
J—"{I‘I <§>} = 2sinc(2f)
From frequency translation theorem, we have

X1(f) = 2sinc[2(f — 10)]
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(b) Find the FT of

t
xo(t) =1 <§> Ccos 207t

We can write x> (t) as

1 t\ 1, . -
— Y = (7207t —7207t
xg(t)—2ﬂ<2>2<e + e )

_1n (3) j20mt 4 15 (3) —j20mt
2 2 2 2

From frequency translation theorem, we have

Xo(f) = sinc[2(f — 10)] 4 sinc[2(f + 10)]
We use the following commands to plot z»(¢), and

Xo(f)

%chsd_ex8.m

t=-2:.001:2;

£f=-20:.005:20;

x2 = pls_fn(t/2) .*cos(20*pix*t);

X2 = sinc(2*x(f-10) )+ sinc(2x(£f+10));

subplot(2,1,1), plot(t,x2), xlabel(’t’), ylabel(’x_2(t)’)
subplot(2,1,2), plot(f,X2), xlabel(’f’), ylabel(’X_2(f)’)
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Example 4.9
In a communication system two signals

x1(t) = 4 cos(2007t) and z>(t) = 6 cos(800xt)
are multiplied to produce

x(t) = 24 cos(2007t) cos(800xt)
Find the FT and frequency spectrum of x(t).

Using Euler’s identity, we rewrite z(t) as

1, . |
x(t) =24 cos(QOOmf)5 (638007Tt + e—J8OO7rt>
= 12 c0s(2007t)e/309™ 412 cos(2007f)e /800

From the frequency translation theorem, FT of x(¢) is

X(f)=6[6(f — 100 —400) + 6(f + 100 — 400)]
+6[6(f — 100 + 400) + 6(f + 100 + 400)]
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or

X(f)=6[6(f —500)+4(f —300)
+ 0(f 4 300) + 6(f + 500)]

It is interesting to observe that the inverse FT of X (f)
IS

z(t) =F{6[06(f —500) +4(f + 500)]}
+ F{6 [6(f —300) + o(f + 300)]}
—12c0s10007nt 4+ 12 cos 6007t

Form the above result, we can see that the product of
two cosine signals has produced the sum of two co-
sine signals, one with the sum of the two frequencies
and the other their difference. This can be verified by
the use of trigonometric identity. This characteristic is
often used in radar and sonar applications.
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The fourier function of the Symbolic Math toolbox is
used to obtain the FT of z(¢) in Example 4.9. Also,
ifourier function is used to find the signal from its FT,
and the result is simplified.

We use the following statements

% chs4_ex9.m

syms t w %» Define symbolic variables
x1= sym(’4*cos(200*pix*t)’);

x2= sym(’6*cos(800*pix*t)’);

x = x1*x2 %» Product of the signals
X = fourier(x) % Fourier transform
g= ifourier(X); %» Inverse Fourier transform
x= simplify(g) %» Simplify the expression
The result is

X
X

24*xcos (200*pixt)*cos (800*pix*t)
12xpi*Dirac (w-1000*pi)+12*pi*Dirac (w+600*pi)+
12xpi*Dirac (w-600%pi)+12*pi*Dirac (w+1000%pi)

12%cos (600*pi*t)+12*xcos (1000*pix*t)

Writing in terms of frequency f, the result is

X(f) = 65(f—500)+66(f+300)+66(f—300)+65(f+500)
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Fourier Transform of Periodic Signals
In Chapter 3, we showed that a periodic signal can be
represented by its Fourier series

0
x(t) = E X, e/"2mfet  \where Xn=—0/ z(t)e I3t gt
To

n=—-—oo

From Equation (1) the Fourier transform of z(¢) is

oo | & o0 00
X(f) :/ ZXnejQTrnfot e—jQWftdt:ZXn/ ej27rnf0te—j27rftdt
o | —~ e
Previously we found the Fourier transform pair
/2™ < 5(f — fo)

Using this relation, we get
3 Xnel?™ot 0 ST Xnd (f — nfo)

This is an important result, showing that the frequency
spectrum of a periodic signal is a series of impulses
of weight X, located at the corresponding harmonic
frequency n fo.
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Example 4.10 (Example 4-10)
Find the Fourier transform of a periodic train of im-
pulses referred to as ideal sampling waveform

ys(t) = > 6(t —mTs)

m——-oo

The complex Fourier coefficients are given by

1 5 - 1
Y., — _/ 5(t 6—327rmf3t — -
n TS _% ( ) TS fS

From the result of the Fourier transform pair of the
periodic signal, we get

S 5(t = mTs) < £ Y 6(f — nfo)
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Differentiation Theorem

Given  z(t) < X(f)
dlz(®)]

then - > 12 fX(f)
dn
also EZS)] s (Gor )" X (F)

This theorem can be proven easily by differentiating
both sides of Equation (1).

Integration Theorem

Given  z(t) <= X(f)

o0 Fo 1 X(0)é(f)
then /_OOZU(T)d’T YR jQWfX(f) + >
where X (0) = /_OO () dt

An important observation is: due to the % factor, inte-

grating a signal decreases its high frequency content.
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Example 4.11 (Example 4-11 text) Find the FT of the
trapezoidal signal shown in Figure (a)

d d?
o0 =
A A

b —a a b —b —a ] —bl l b

(@) (b) (c)

The first and second derivative of this signal is shown in Figures
(b)&(c). The analytical expression for the second derivative is

2
d;gt) = K[6(t+b)—6(t+a)—6(t—a)+5(t—0)]

The FT of the second derivative is

2

= 2K|[cos 27 fb — cos2x fa] = (j27f)2 X (f)
Therefore,

cos 2w fb — cos 27rfa]
X =2K
=2k 2L
28in27'('fb 2 sinQWfa]
(7 fb)? (mfa)?
=K [bzsincz(fb) — a257§n62(fa)]

:K[b
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The following MATLAB commands obtains the plot of
x(t) and X(f) for A = 1, b = 1.5, and four values
ofa:0,0.5,1,1.5

%chsd_ex1l.m

£f=-2:.001:2;

A =1,;

b=1.5;

a= -0.500000001;

form = 1:4

a=a+ 0.5;

t(m,:) = [-b -a 0 a b]l;

x(m,:) =[O0 A A A 0];

K = A/(b-a);

X(m,:) = Kx(b~2*sinc(f*b) .*sinc(f*b)- a"2*sinc(f*a) .*sinc(fx*a
end

subplot(1,2,1), plot(t(1,:), x(1,:), t(2,:), x(2,:), t(3,:),
xlabel(’t’), ylabel(’x(t)’)

subplot(1,2,2), plot(f, X), xlabel(’t’), ylabel(’X(f)’)
legend(’a = 0’, ’a=.5",’a =17, ’a =1.57,2)
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Example 4.12 (Example 4-12 Textbook)
Using the integration theorem, find the FT of a unit
step function.

Flo)] =1
From the integration theorem, we have
P\ a(nr| = %X(f) + X(O;(s(f)
since
u(t) = / too 5(\)d\

and

X(0) = /0:0 S5(t)dt = 1
then

S 1

Flu(®)] = =+

221



Fourier transform of the Signum function
This is a signal related to the unit step signal, and is

defined as

1—

1 ¢t>0
sgn(t)=2u(t)—1={_l {20 5 .t

%sgn(t) = 26(t)

From the differentiation theorem, we have

dx (1)
dt

F [ ] = 727 fX(f)
Since  F [%sgn(t)] — F[26(1)] = 2
we have J2rfX(f) =2
1

or Flsgn(t)] = X(f) = —
jmf

and from the duality theorem, we can write

F[ 2] = —json(r)
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Fourier transform of a constant (DC level)
We found that

F |20 = 5(f — fo)
For fop = O, we get
Fl1l=46(f) or  FlK]= Kd(f)

Knowing the FT of a signum function and unity, we
can obtain the FT of a step function. We found the FT
of a signum function as

Fl2u(t) — 1] = ——

jmf
or
D F[u(®)] — F[1] = J%
thus
1 1 1
O = 35y + 570
1
-9
TR

This is the same result as was found In Example 4.12
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Convolution Theorem

This is given by

Flr1(t) * z2(t)] = X1(f)X2(f)

fwmw*mun=/w

_/oowl(t — )\)u(t—)\)xg()\)d)\] o—I2mft gy

—0o0 L
/oo B
o0

/ xl(t—A)e—ﬂ”f(t—”dt] 2o (N)e 72 AN

=X1(F) X2(f)

We write

1 (t) * 2o(t) <= X1(f)Xa(f)

Multiplication Theorem
According to the duality theorem, we can also write

z1()zo(t) < X1(f) * Xo(f)
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Example 4.13 (Example 4-13 Textbook)
Consider the FT of the convolution of two rectangular
pulses which is a triangular signal given by

CRICEAC
Since F [rl (3>] = rsinc(fr)

T

}2 = 2sinc?(f7)
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Example 4.14 (Example 4-14 Textbook)
Find the FT of the convolution of the following signal,
known as the Hilbert transform

F(t) = o(t) * % — %/_O:O a:()\)ﬁd)\

Since J—“[%] = —jsgn(f), using the convolution the-
orem, we get

Fla®) = F || Flo@®)] = ~jsgn(HX ()
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Example 4.15 (Example 4-15)
Find the FT of the cosinusoidal pulse, given by

t
x(t) = Al (—) COS 27 fot
T
We have the following FT
t

T

Al ( > PN Atsine(fT)

and
1
cos2rfot L5 ~8(f ~ fo) + 530 + fo)

From the multiplication theorem

Fla(®)] = Arsine(f) = [8(f ~ fo) + 5(f + fo)

The result for the following convolution is

o

sinc(fr) * 6(f + fo)=/ sincOT)S(A — f + fo)dA

— 00
=sinc(f £+ fo)7
Thus,

Fla (] = 5 Tsine(f — fo)r + sinc(f + fo)7]
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Frequency Differentiation
The differentiation theorem has a dual property and
we can write

dX(f)(]—"

i > —j2mtx(t)

Example 4.16
Find the FT of

g(z) = te”“u(t)

- —at _ 1
X(f) =F e u(t)| = o
Therefore
G(f) = Flto(t)] = — [d X(f)]
—j2nf | df

3 a5 7277) = iom (a t e
—j2m |df \a + j2nf)| —j2m |(a 4+ j2nf)>2
1
(a4 j27f)2
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Switched Cosine

This is a signal turned on att = 0, x(t) = cos(2x fot)u(t). We
can write this as

2(t) = s u(t) = S u(t) + Se I ()

The Fourier transform of w(t) is

Flu(®)] = —f + =0(f)
Then from the frequency shifting property, we get
1] 1
F == —
1= | F3nr =iy + 300 - o)l
1 1
43 mm g + 200+ )]
1
— 2

s
5(f - fo)+<5(f-|—fo)]+]2f(f )

0
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Modulation

Transmission of a low frequency message signal re-
quires shifting the range of frequencies contained in
the message signal to a much higher frequencies. This
Is achieved by modulation and transmitting the mod-
ulated signal. Demodulation is used for recovering
the modulated signal at the receiving end. Among
the many schemes available are amplitude modula-
tion (AM), frequency modulation (FM), and phase mod-
ulation (PM).

Amplitude modulation is the process of multiplying a
low-frequency signal z(t), such as bandlimited voice
or music signals by a high frequency sinusoid known
as carrier signal.

x AN () = z(t) cos 2w fot
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Suppose we want to transmit a speech signal x(t)
which has a spectrum with frequencies ranging from
200 Hz to 4 kHz over a communication channel con-
sisting of a satellite link. One method is to multiply
x(t) with a carrier frequency in the range of frequency
used by the satellite (few hundred MHz to 40 GHz).

The modulated Signal follows the amplitude of z(t).
In the frequency domain, the frequency spectrum of
the signal moves to a new center frequency. This will
allow us to modulate many signals with different car-
rier frequencies and combine them for transmission
over a communication channel. This process is known
as frequency multiplexing.
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Example 4.17
Suppose we want to transmit a signal

x(t) =4 4+ 4 cos2n20t

over a communication channel operating at 400 Hz.
The modulated signal is

T Ap(r) = (4 + 4 cos40mt) cos 800mt
=4 cos800nt + 4 cos40nt cos 800t
=4 cos800nt + 2c0s840nt + 2cos 760t

x 47 (t) in term of the counter rotating phasor is

z(1) = [26]'8007715 4 26—]'8007715}
=4 [ej8407rt +e—j8407rt] 4+ [6]7607715 +e—j7607rt}

The following statements are used to plot x(¢), the
carrier signal, the modulated signal x 4,(¢), and the
amplitude spectrum of the AM signal.
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%chsd_ex17.m

t=0:.00001:.1;

x =4+4xcos (2*xpi*x20%t) ;

cs= cos(2xpi*400%t) ;

x_AM = x.*cCs;

subplot(3,1, 1), plot(t,x,’r’, t, cs,’b’)
subplot(3,1,2), plot(t, x_AM, ’m’)
xlabel(’t, s’), ylabel(’Amplitude’)
text(0.07, 5, ’AM signal’)

f=[380 400 420]; f=[-f f];

A= 1[2, 4, 2]; A= [A/2, A/2];
subplot(3,1,3), stem(f, A, ’m’)
xlabel(’f, Hz’), ylabel(’Amplitude’)
text(0, 1.5, ’Spectrum of the AM signal’)
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The signal processing toolbox provides the following

functions:
[y, 1] = modulate(x, fc, fs, ‘'method’, opt)
X = demod(y, fc, fs, ‘'method’, opt)
where

fs is the sampling frequency.

fc is the carrier frequency.

method is the desired modulation method.

opt is the optional argument that the method requires.

Ten methods are available, few of these methods are
am  Amplitude modulation
fm Frequency modulation
ptm  Pulse time modulation
pwm Pulse width modulation
gam quadrature amplitude modulation
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Example 4.18

A 60 Hz sin wave is sampled at 10000Hz. Obtain and
plot the modulated and demodulated signals. The
carrier signal frequency is 800 Hz.

We use the following commands and plot a portion of
the signals:

%chsd_ex18.m

t=(0:1/10000:4) ;

x =sin(2*pi*60%t) ;

y = modulate(x, 800, 10000, ’am’);
subplot(3,1, 1), plot(t(1:300) ,x(1:300),’r’)
title(’original Signal’)

subplot(3,1,2), plot(t(1:300), y(1:300), ’m’)
title(’Modulated Signal’)

xd = 2xdemod(y, 800, 10000, ’am’);
subplot(3,1,3), plot(t(1:300), xd(1:300), ’m’)
axis([0 .03 -1 1])

title(’Demodulated Signal’)

xlabel(’t, s’)
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Fourier Transform of a Modulated Signal
x o (t) = z(t) cos 27 fot
The Fourier transform of cos 2« fot is
1 1
Flcos 27 fot] = 55(f — fo) + 55(f + fo)

Multiplication in time domain corresponds to convolution in the
frequency domain, and we have

Flzan (t)] = Flz(t) cos 2w fot]
= Flz(t)] x F[cos 2 fot]

=X () *[530] ~ Jo) + 567 + fo)]
1 o0

=1 / XS = fo— N
+3 / X(N8(f + fo— A)dA

1 1
= SX(f = fo) + 5X(f + fo)
or
F 1 1
z(t) cos 2 fot +— EX(f — fo) + EX(f + fo)
We see that the FT of the modulated signal is half the sum of the
shifted transform X (f — fo) and X (f + fo)
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Fourier Transform Pairs

x(t) X(f)

5(t) g2 f

6(t) 1

6(t —to) e J2mfto

eJ2m fot 6(f — fo)

1 6(f)

M (%) rsinc(Tf)

W sinc(2Wt) N (s5)

A (%) rsinc?(rf)

sinc(t) ncf)

u(t) %&f) + j217rf

sgn(t) =

By Zjsan(f)

e *u(t) m

te % u(t) m

el AP

e o

Cos 27 fot %15(f—fo)+%5(f+f0)
sin 27 fot 2—j5(f—f0)—2%-5(f+f0)
tu(t) i:0(f) = g2

z(t) = x(t) * %
z:::_oo 0(t — mTy)

Sjsgn(F) X (D)
Tis ZmZ—oo 6(f —mfs)

239



Fourier Transform Theorems (Operational Transforms)

Operational Properties of the Fourier Transform

Transform z(t) X(f)
Duality —f)
Superposition ar1z1(t) + axza(t) ale(f) -|- a2X2(f)
Time delay z(t —to) X (f)e-d2mfto
Time reversal z(—t) X(=1)
Scaling z(at) =X (1)
Frequency translation — x(t)e/?™ /ot X(f = fo)
Modulation z(t) cos(2n fot) SX(f = fo) + 3X(f + fo)
Derivative d‘”—(t) jrf X (f)

d"di?’ (G2m "X (f)

_JQF LX(f) tx(t)
Integral | =(t)dt 27X (f) + 3X(0)5(f)
Convolution :cl(t) % 22(t) X1(f)X2(f)
Conjugation z* () X*(f)
Multiplication x1(t) * z2(t) X1(f) * Xo(f)
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System Analysis with Fourier transform

By means of Fourier transform the differential equa-
tions of a LTI system is transformed into algebraic
equations, simplifying the analysis. As you know con-
volution in time domain corresponds to multiplication
in frequency domain, i.e.,

1 () * 2o(t) < X1(F)X2(f)

if h(t) is the impulse response of a system, the re-
sponse to the input signal z(t) is y(t) = h(t) * xz(t),
or in frequency domain

Y(f) =H(HX()

where H(f) = |H(f)|/ H(f) is referred to the trans-
fer function of the system and is identical to the fre-
quency response transfer function H(w), defined ear-
lier. |H(f)| is the amplitude response function, and
/H(f) is the phase response function. For real time
function |H(f)| = |H(—f)|,and /H(f) = —/H(—f)
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The response of a LTl system is represented as

(1) h(t) y(t) = [T a(M)h(t — N)dA
—~— LTI System -
XD wp | YW =XADH)

The time domain response is the inverse Fourier trans-
formof Y(f), i.e.,

y() = [ X(DHH(Pe T gf

— 00
The system transfer function H(f) can be found in fol-
lowing ways:

1. From the impulse response h(t), find H(f) = F[h(t)].

2. Obtain Fourier transform of the system differential

equation and find the ratio % to find H(f).

3. Transform the time domain equations into the pha-
sor domain, expressing circuit elements with
impedances and find the transfer function.

4. Find the Laplace transform of the differential equa-
tions, obtain the s-domain transfer function and
replace s by j2n f.
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Example 4.19 (Example 4-16 Textbook)
Obtain the transfer function of the lowpass RC filter

shown
R
o ANAN T
+ +

z(t) C= y(t)

From KVL, we have

d
Rcd—"j + y(t) = z(t)
Taking Fourier transform of both side, we have

(72n fRC 4+ 1)Y (f) = X(f)

_Y(f) o 1 o 1
=X T 14 i2nfrC " 114
_ ! Qltan_l(fi)
i+ () :

where f. = ﬁ IS known as the corner frequency,
the half-power frequency,or the 3-dB frequency.
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Using the Fourier series method, find the response of
the circuit in Example 4.19 when the input is

z(t) = Ae “u(t)

A

X(D) = Fla®)] = -5

The FT of the output is
1 A
V() = HHX(f) = ( ) ( )

1+ j27fRC ) \a + jorf

A 1
" RC | (g5 +i2nf) (e + j27rf)]
Al K Lk |
RC _% +j2nf  a+j2rf
1 1 T

_ A a—1/RC 1/RC—a

"~ RC e ti2nf  atj2nf)
A 1 1
 aRC -1 %—I—jwa—l_a—I—jwa]

Finding the inverse Fourier transform, we get
A

y(t) = ——— |e7F — e u(®)
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For the case when a = 7+, we may write

1 A
= (1 +j27rfRC> (R}C - j27rf)

_ yiie
(1 + j2rn fRC)?

Taking the Fourier transform, we get

(t) = “—te~Hou(t)
y —%6 u
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Steady-State Response to Harmonic Inputs
The Fourier transform of the output of LTI system is

Y(f) =H(HX()

If the input x(¢) is represented by its Fourier series

00
z(t) = Z Xn6327rnfot

nN—-—oo

Using the transform pair ei27mfot <2 5(f — nfy),

X(f)= > Xnd(f—nfo)

n——oo

Thus, the Fourier transform of the output is

Y()= > XnH(nfo)é(f —nfo)

= 3 | Xu||H(nfo)|ed/ Xt Hmfo)) 5 f—n o)

The inverse Fourier transform is

W= 3 |XullH(nfo)|ed ot/ Xnk-/ H(nfo)

n——oo
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We conclude that for harmonic inputs at different fre-
qguencies, we evaluate H (w) and the time domain out-
put at each input frequency and superpose the result.
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Example 4.20 (Example 4-18 Textbook)
Consider an ideal lowpass filter with amplitude and
phase response function given by

|HUN:KHQ%)={

K -B< f<B
O otherwise

and
LH(f) = —2mtof
Find the output response to z(t) = A cos(2x fot + 6g)

1 .
X =X* = 5Aeﬁo with all other X,,’'s = 0

Therefore, the output is

ma={0 fo=7
KAcos[2mfo(t —to) +00] fo<B
Thus an ideal lowpass filter completely rejects all spec-
tral components with frequencies greater than some
cutoff frequency B, and passes all input spectral com-
ponents below this cutoff frequency. The amplitude is
multiplied by a constant K and they are phase shifted
by —27 fotg or delayed in time by .
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Bandwidth and Rise Time

A practical measure of bandwidth in frequency do-
main is the half-power bandwidth, i.e., the range of
frequencies over which the magnitude exceeds m
times its maximum value. The swiftness of the time-
domain response is expressed in terms of the response
rise time. We define rise time T'. as the time required
for the response to rise from 10 percent to 90 percent
of the final value. For a given system, an approximate
relation can be found as

wpTRr = constant

Therefore, for larger the bandwidth the time-domain
response rise time is shorter and we have a swifter
response.
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Ideal Filters

A filter commonly used in electronic signal processing
is a frequency-selective device that allows us to shape
the magnitude and phase response in a prescribed
manner. The transfer function of a filter is written as

() =28

(f)
Where X (f), and Y (f) are the Fourier transform of
input and output signals respectively. In this section
we consider ideal filters which are not physically real-
izable, but their concept are useful in the initial stages
of system analysis and design. An ideal filter has
a transfer function which has a constant amplitude
within the pass band and zero elsewhere. The fre-
quency response characteristics of three types of fil-
ters known as ideal lowpass filter, ideal high-pass fil-

ter, and ideal bandpass filter are shown below.
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Hrp(f) t

slope = —2to LHLP(f)

K |
N
-B 0 B —B ON
Hgp(f) \ ZHH‘fD(f)
- K S, |
! l B 1
-B 0 B -B 0 |
Hpp(f) \ tHpr(f)
K |
—fe 0 fe —fe 0 :
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A distortionless filter permits a linear phase shift and
constant gain over the pass band. For example for the
ideal low pass filter

Hpp(f) = Ke 27/t

where 27 ftq is the phase shift. The impulse response
of any filter is given by the inverse Fourier transform
of its transfer function. The impulse response of the
ideal filter is

@) .
hp(®) = [ Hup(fel?™faf
/B Ke—i27ftogi2mft g
—B

— /B Kej%f(t_to}df
—B
= 2BKsinc[2B(t — tg)]

The impulse response hy p(t) for B = 2,t5g = 0.5 is
obtained as shown.
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B =2; K=1; t_0 = .b;

t =-.5:.001:1.5;

hLP = 2xBxK*xsinc(2*¥Bx(t - t_0));

plot(t, hLP), grid

xlabel(’t’), ylabel(’h_{LP}(t)’)

title(’Impulse response of an ideal LP Filter’)

Impulse response of an idela LP Filter

4

-0.5 0 0.5 1 1.5

We see that the impulse response starts long before
the impulse occurs at ¢ = 0. This suggests that ideal
filters are noncausal and cannot be physically real-
ized.
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Non-ldeal Filters

The ideal filters are not realizable in practice since
they are not causal. In real applications it is necessary
to use causal filters. For example the simple RC low-
pass filter is a crude approximation of the ideal low-
pass filter. In designing analog filters we try to achieve
a good enough approximation to the ideal filter such
that the frequency response is flat in the pass band
and roll-off sharply at the cutoff frequency. One of the
filter design commonly used for a low pass filter is the
Butterworth filter. The amplitude of the FRTF of the
RC lowpass filter presented earlier is

1
2
V1+ ()
We shall now consider the higher order Butterworth
filters.

H(w) =
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Butterworth Filters
The second-order transfer function in the standard form

IS
w

H(s) =
(s) s2 4+ 2Cwns + w,,%
For s = jw, the frequency response transfer function

IS
1
H(w) =
T ()

The amplitude is
1

H(w)| = — 5
- (@) + ez

Wn,

Taking derivative of the | H(w)| with respect to w, we
find that the peak of | H(w)| occurs at

Wy zwn\/l —2C2 for ¢ <

E\H

&

The system is a lowpass filter when ¢ >
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If { = % the resulting lowpass filter is said to be
maximally flat, since the variation in the magnitude
|H(w)| is as small as possible across the passband of
the filter. Substituting for { = % the cutoff frequency
becomes w. = wy, and the amplitude becomes

i+ ()

This filter is called the second-order Butterworth filter.

[ H(w)| =

Example 4.21
Find the amplitude response of the second order But-
terworth filter given by

w2

C
s2 4+ /2wes + wg
for w, = 100 radian/s.

H(s) =

We use the following commands:
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wc =100;

num=wc" 2;

den =[1 sqrt(2)*wc wc~2];

w= logspace(-1, 3);

[mag, ph] = bode(num, den , w);
semilogx(w, abs(mag), ’r’), grid
title(’Second-order Butterworth Filter’)
xlabel(’\omega, rad/s’)

The result is

Second-order Butterworth Filter
1

08

0.6

04

02r

10’ 10° 10°
, rad/s
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N-pole Butterworth Filter

The Butterworth filter has a maximally flat frequency
response across the pass band. The filler transfer
function has poles that are equally spaced on a cir-
cle of radius equal to the cutoff frequency w. in the
left half s-plane. For example, the transfer function of
the third-order Butterworth filter is

3 3
w w;

(s + we) (8% + wes + w?) - $3 4+ 2wcs? + 2w2s + w3
For s = jw, the amplitude of the third-order filter is
1

6
Vit ()
In general, the magnitude of the frequency response
function for the Butterworth filter is

1

Jre ()"

where n is the order of the filter, and for the passive filters n also

H(s) =

[H(w)| =

[H(w)| =

indicates the number of reactive elements. For any value of n,
the cutoff frequency w. = 1 rad/sec. For large w the amplitude
response approximate to |H(w)| = 1/w™. That is, the high fre-
quency asymptote roll-off at a slope of —20n dB/decade.
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The transfer function can be determined from a table
of the Butterworth polynomials. The Signal Process-
ing Toolbox function [z, p, k] = buttap(n) returns the
zero, poles and the gain of a normalized n order low-
pass Butterworth filter.

Example 4.22
Design a normalized 5th order lowpass Butterworth

filter and plot the frequency response amplitude.
We use the following commands

[z, p, k] = buttap(5) 7% Returns zeros, poles, and gain.
[num,den]=zp2tf(z,p,k)’% transforms zero and poles to

%» polynomial Transfer function
w= logspace(-1, 2);
[mag, phase] = bode(num, den, w);
semilogx(w, mag), grid
xlabel(’\omega, rad/s’), ylabel(’Amplitude’)
title(’5°{th} order LP Butterworth Filter’)

The result is

z = []

p = -0.3090 + 0.9511i
-0.3090 - 0.95111
-0.8090 + 0.58781
-0.8090 - 0.58781
-1.0000

k= 1

num= 0 0 0 0 0 1 den= 1 3.2361 5.2361 5.2361 3.2361 1
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5th order LP Butterworth Filter

Amplitude
o o
(6] »

©
N

031

0.21

0.1

0 —1 I 0 I 1 2
10 10 10 10
, rad/s
Thus, the fifth order lowpass Butterworth filter transfer
function is

1

H —
(s) s°+3.2361s54+5.2361s3+5.236152+3.2361s+1
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Filter Realization

For a given type of filter first the transfer function is
obtained based on the specification on the desired
bandwidth and the stopband attenuation. Then using
network synthesis the filter is designed with passive
elements and op amps. You learn how to realize var-
ious types of filters in EE-404 (Active Filters) and EE-
422 (Digital signal Processing). The following circuits
shows RLC realization of second- and third-order But-
terworth filters.
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RLC Realization of a Second-order

Butterworth Filter

Consider the RLC circuit shown in (a) and its s-domain
equivalent circuit in (b).

— R R
R L o 2we R \/EWCS
vi(t) C = wﬁ =vo(t) Vi(s) iu/gi TVo(s)
(a) (b)

Applying the voltage divider concept to the s-domain
circuit in (b), we get

weR
VO(S) V2s

Vi(s) N CS+R+ \‘;C—R

H(s) =

Multiplying numerator and denominator by % will
result in the second-order Butterworth filter

we

H(s) = s2 4+ 2wes + wCQ
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RLC Realization of a third-order

Butterworth Filter

Consider the RLC circuit shown in (a) and its s-domain
equivalent circuit in (b).

[ = 4R 4Rs
R T 3w R Bwe
+ + + +
1 1 3 1 2w.R L 2w.R |
Ui(t) 2w0.R T 2w.R T UO(t) VZ(S) ws T §8 T %(3)

(@) ° ° (b)
Writing the s-domain node voltage equations for cir-

cuit (b), we obtain

1 Swe Swe
Q%R+F+4§s _34;){8 3 Vl(s)] — [%]sz
We S We
~ 4Rs 2weR + ARs Vo(s) 0

Using Cramer’s rule to solve for V> (s), the determi-
nants are
3

— 3 2 2 3
A\ = 4w02R28 (s + 2wesT + 2wis + wc)
36&)0
AQ - 4R28V;;(8)
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The output voltage is given by

A
Vo =3

Substituting for A2 and A, we obtain the transfer
function for the third-order Butterworth filter

Vo(s) _ wg

Vi(s) s34 2wes? + 2w2s + w3
Many standard Tables are available with a list of com-
ponents and circuit configuration for each type of filter,
thus it is not necessary to synthesize the filter using
circuit equations.

H(s) =

The MATLAB Signal Processing Toolbox contains nu-
merous functions for designing lowpass, highpass and
bandpass filters for both analog and digital filters. These
includes the classical |IR (infinite-impulse-response),

Butterworth, Chebyshev type | and Il Elliptic, and Bessel.
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Following are some of the functions from the Signal
Processing Toolbox for filter design

‘'num, den] = butter(n, wn, ’ftype’, ’s’)

‘'num, den] = cheby1(n, Rp, wn ’ftype’, ’s’)

‘'num, den ]= cheby2(n, Rp, wn ’ftype’, ’s’)

‘'num, den] = besself(n, wn, ’ftype’)

‘'num, den] = ellip(n, Rp, , Rs, wn ’ftype’, ’s’)

For their use and the description of function arguments
type help followed by the function name at the MAT-
LAB prompt. The Toolbox includes many other func-
tions for FIR (finite impulse response) filters design.
The filter design and synthesis is beyond the scope of
this course, Use of Butterworth function for few filter

design is described below:
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The command [num, den] = butter(n, wn, ’s’) de-
signs an order n lowpass analog Butterworth filter with
cutoff frequency wn. s specifies that we have an ana-
log filter and require its s-domain function. If wn is a
two element vector [w1 w2] with w1 < w2, the func-
tion returns an order 2n bandpass analog filter with
bandpass w1 < w < w2.

The command [num, den] = butter(n, wn, ’ftype’,s’)
designs a highpass or bandstop filter, where type is
high for highpass analog filter with cutoff frequency
wn.

stop for an order 2n bandstop analog filter if wn is a
two-element vector [w1, w2].

All functions return the numerator and denominator
coefficients of the transfer function when the output
is specified with two arguments [num, den]. If three
arguments [z, p, k] are specified, the functions return
zeros, poles and gain of the transfer function. Finally
for four arguments [A, B, C, D], the functions return
the state-space models.
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Example 4.23
Consider the design of a Butterworth lowpass filter to
meet the following specifications:

Bandwidth w. = 100 rad/s, with the frequency re-
sponse function amplitude of -60dB at w = 1000
rad/s.

20log |H (w)|=-60 or |H(w)|=10"3

The magnitude of the frequency response function for
the Butterworth filter is

Therefore, we have the magnitude of the frequency
response function for the Butterworth filter is

|H(w)] =103 = ! 5
1+ ()™

10° =1 4 (10)*"
Neglecting 1, we get 2n = 6, orn = 3.

or
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We use the following commands to obtain the trans-
fer function of the third-order Butterworth filter and to
obtain its frequency response.

[num, den]l=butter(3, 100, ’s’) % Returns num, and den
%y of the 3rd order Butterworth lowpass filter
bode (num, den)

The result is

num =

0 0 0 1.0000e+006
den =

1.0000e+000 2.0000e+002 2.0000e+004 1.0000e+006

The transfer function is

(100)3

H(s) = s3 4+ 2(100)s2 +2(100)2s + (100)3
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Phase (deg); Magnitude (dB)

Bode Diagrams
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Example 4.24

Design a third-order highpass Butterworth filter with
cutoff frequency of 1000 rad/sec. and obtain the fre-
guency response.

The following commands:

[num, den] = butter(3, 1000, ’high’, ’s’)
bode (num, den)

result in
num =

1 0 0 0
den =

1.00e+000 2.00e+003 2.00e+006 1.00e+009

From the above result the filter transfer function is

g3

H(s) = 3 5(1000)2 + 2(1000)25 + (1000)3
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Phase (deg); Magnitude (dB)

Bode Diagrams
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Example 4.25

(a) Design a fourth-order bandpass Butterworth filter
with a passband from 300 to 500 rad/sec, and obtain
the frequency response.

(b) The following signal is applied to the filter

z(t) = sin(50t) 4 sin(400t) + sin(1200¢)

Find the attenuation and phase shift introduced by the
filter for each component of the input signal. Deter-
mine the expression for the output signal and obtain a
plot of input and output signals.

The following commands:

[num, den] = butter(2, [300 500], ’s’)

bode (num, den)

w=[50 400 1200] ;

[H, Adegl= bode(num, den, w); % |H(w)| & angle

A = Adeg*pi/180; /» Phase angle in radian

disp([’ |H| Angle, rad’])

disp([H, A]), t=0:.03/500:.03;

x = 8in(50*t)+sin(400*t)+sin(1200%*t) ) ;

y = H(1)*sin(50*t+ A(1)) + H(2)*sin(400*%t+A(2))...
+ H(3)*sin(1200*t+ A(3));

figure(2), plot(t,x, t, y), xlabel(’t, sec’)

text (.001,1.75,’x(t)’), text(.0036, 1.15,’y(t)’)
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result in

num =
0 0 4.0000e+004 O 0
den =
1.0000e+000 2.8284e+002 3.4000e+005 4.2426e+007
2.2500e+010

|H| Angle, rad
0.0046 3.0456
0.9999 6.1055
0.0346 3.4077

From the above result, the filter transfer function is

40000s2
s*+282.8453+340000s52+42.426 x 10042.25 x 1010

As we can see from the result for H(w), the 50 and
1200 rad/sec components are attenuated greatly, and
the output signal is approximately

H(s)=

y(t) ~ sin 400t

The frequency response, and the input and output sig-
nals are as shown.
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Frequency response for the filter in Example 4.25.

Bode Diagrams

Phase (deg); Magnitude (dB)

Frequency (rad/sec)
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Input and output signals of Example 4.25.

2.5

0 0.005 0.01 0.015 0.02 0.025 0.03
t, sec
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Interactive Signal Processing Environment

The signal processing Toolbox includes an interactive
graphical user interface (GUI), called sptool, for an-
alyzing and manipulating digital signals, filters, and
spectra. To open this interactive GUI environment
type sptool at the MATLAB prompt. Digital signal
processing is covered in EE-422. To learn how to
use this tool refer to the Signal Processing Toolbox, or
you can access the online documentation by selecting
helpdesk from help menu, or typing helpdesk.
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Sampling

Sampling provides the mechanism for converting ana-
log signals to digital signals. The digitized signal can
be processed by a digital computer or can be trans-
mitted over a digital communication system.

Sampling of a continuous-time signal z(t) can be il-
lustrated by a rotating switch that is closed for an in-
stant every 1" seconds as shown.

S

Switch closes at t = nT

x(t) xs(t)

Scheme for sampling
The action of the switch can be modeled as a periodic
pulse train p(¢) of unit height, with period 7', and pulse
duration 7. The sampled signal zs(t) equals z(t) for
the 7 seconds that the switch remains closed and is
zero when the switch is open.

/\/ z(t) fﬁ) zs(t) My o/
pt) | T
¢ m ﬂ ﬂ t ¢
0] T 2T 3T
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The sampled signal is given by

zs(t) = p(t)z (1)

When designing an electronic system it is very impor-
tant to know the frequency spectrum of the signal,
thus we need to obtain the Fourier transform of the
sampled signal. The Fourier transform P( f) is a train
of impulses whose strength C), equal the Fourier se-
ries coefficients of p(¢t) , i.e.,

P(f) — E Cn5(f —nfs)
where
1 5 ;
— —In2m fst
C'n, — T/_2T p(t)e dt

fs is the fundamental frequency of p(¢), which is also
the sampling frequency

1
fszf
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The spectrum Xs(f) of the sampled signal zs(t) =
x(t)p(t) is described by the convolution

Xs(f) =X« P(f)=X(f)* ) Cnd(f —nfs)

or

Xs(f) = Z CnX(f —nfs)
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Assuming the signal z(¢) to be bandlimited, its Fourier

transform whose spectrum X (f) is assumed as shown
lies in the bandwidth —f;, < f < fp. Thatis, X is

assumed zero for | f| > f},. The spectrum of the sam-

pled signal Xs(f) is the superposition of the scaled

shifted replica of X (f). That is each of the spectra

IS multiplied by the corresponding Fourier series con-

stant C,, which decay as %

n"

My p(t) =z | T

-7 0 T 2T 3T
X(f)t Comvolve P(f) Go N CoA,_.-.__XS(f):X(f)*P(f)
A C1 Oy
_fhfh _fs 0 fs 2fs 3fs _fs th/fs 2fs 3fs

fS'fh
If X(f) is to be recoverable from Xs(f), and conse-

quently z(¢) from x5(t), then

Js—Tn > Th or fs>2f,
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Thus, if there is no spectral overlap, the image about
the origin equals Co X (f), and X ¢ can be recovered
by passing the sampled signal through an ideal low
pass filter with a cutoff frequency of f;, = 0.5f5 and
a gain of Cio.

Shannon Sampling Theorem

A bandlimited signal, x(t), having no frequency com-
ponent above f; can be reconstructed perfectly from
their samples provided the sampling rate fs > 2f;,.
That is, the time between the samples must be no
greater than 2f The critical sampling rate fs = 2f;,
IS called the Nyquist rate, and the critical sampling in-
terval Q—fh Is called the Nyquist interval. The Nyquist
rate is determined by the bandwidth of the given (ban-
dlimited signal) = (t).

Claude Shannon and Harry Nyquist were researchers at Bell Lab. who made

significant contribution to the theory of sampling and digital communication.
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Ideal Sampling (Impulse-Train Sampling)

In digital systems, the sampling signal is an extremely
narrow pulse having infinitely small width 7. Thus,
to simplify the computation of the transform z(¢)p(t),
the pulse train p(t) is replaced by a train of impulses
given by

p)= Y 6t—nT)

n——oo

@)
P(f) = Z Crnd(f —nfs)
— OO
The Fourier series coefficients are
1 (% 1
— —Jn2mfst 34 _
Cn—?/_TTé(t)e gn2mf dt = — = fs
or
o
P(f) = fs Z 6(f —nfs)
— OO
Thus, the spectrum of the sampled signal becomes
©.@)
Xs(f) = fs Z X(f —nfs)
— 00
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The spectra of the signals for ideal sampling is as

shown.
My . I ‘
¢ T '
—T 0 T 2T 3T
X(F)t ComvoneP(f)  fo fo fo fo = :.:fsA_tXS({) ::‘:X(f;)*P(f)
—fn fn —fs 0 fs 2fs 3fs —fs thffs 2fs 3fs

fS'fh

Note that all translated spectra have the same ampli-
tude. Once againX, and consequently x(t) can be
recovered by passing the sampled signal through an

ideal low pass filter.

Sampling at a rate slower than the Nyquist rate cause
the spectra images to overlap and we cannot recover
x(t). The occurrence of spectra overlap is known as

aliasing.
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The practical signals are not absolutely bandlimted,
and thus reconstruction of the original signal without
any error is not possible. However, in all practical sig-
nals there is some frequency beyond which the en-
ergy is negligible. This frequency is usually taken as
the bandwidth. Also, in practice we have to use non-
ideal causal lowpass filters which results in some error
in the recovered signal. There is a tradeoff between
the complexity of the filter design and the accuracy of
the reconstructed signal. In order to improve the ac-
curacy sampling is done at a much higher frequency
than the Nyquist rate. Oversampling causes the spec-
tra images to be sufficiently far apart so that a more
realistic filter can be used. Nonbandlimited signals
are usually sampled at approximately 10 times the fre-
quency at which the amplitude spectrum is 3 dB down
from its maximum value.
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Ideal Signal Recovery and sinc Interpolation
For ideal sampling, i.e., when the sampling signal is a
train of impulses, the sampled signal is

0@

@)
zs(t) =z(t) > O6(@t—kT)= > x(kT)é(t—KT)
k=—o0 k=—o0
We can recover the signal by passing xs(¢) through
an ideal lowpass filter with a gain of % and a cutoff
frequency of 0.5 fs.

Xl(f) ‘ N /Y<(f)
_fs_ hO fh _fS _O°5fs Ost _fs fs
0
¢ 0 y(t)
1L, fomwal ]
T

The recovered signal y(t) is therefore given by the
convolution

y(t) = z5(t) * h(t) = [ > @(kT)s(t — KT) | = h(t)
k=—00
= i 2(KT)h(t — kT)
k=—00
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The impulse response of a lowpass filter is a sincfunc-
tion given by

h(t) = sincfst or
t
h(t — kT) =sincfs(t — kT) = sz’nc(? — k)

Substituting for h(t) we find the following relation known
as interpolation formula.

> t
w(t) = 3 a(kt)sine <— _ k)
e T
—
This equation shows that the original signal x(¢) can
be reconstructed by weighting each sample by a sinc
function centered at the sample time and summing as
illustrated below.

y(®) = x(t)

(1T nT (n+1)T
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Example 8.1 (Textbook Example 8-1)

Consider the signal x(t) = 6 cos 27 (5)t

Sampled at 7 Hz and 14 Hz. Since the highest fre-
quency (the only frequency in this case) is 5 Hz, we
will see the effect of sampling a signal at both a fre-
guency less than and greater than twice the highest

frequency in x(t).
Spectrum of z(¢) X (f)

Lt

|deal Reconstruction LPF __ Xs(f) Spectrum of sampled signal, fi=7H=z

S P ] L]

-33-30 -26-23 -19-16 -12-9 -5 -202 5 9 12 1619 2326 30 33

ldeal Reconstruction LPF X .(f) Spectrum of sampled signal, fs=14Hz

| 42
-33 -23 -19 9 5 0 5 9 19 23 33
Xs(f)H(Sf) X.s(f)H(f)
20 2 _ -5 5
Output of reconstruction Output of reconstruchon
filter with fs = 7THz filter with fs = 14H =z
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The spectrum of the signal is

X(f) =36(f —5)+36(f +5)

Thus the spectrum of the sampled signal is

Xs(f)=3fs Z 0(f=5—nfs)+0(f+5—nfs)

nN——oo
The assumed reconstruction filter, H(f), is an ideal
LPF with a bandwidth of 0.5 f, and amplitude of T' =
%. When undersampling (7 Hz) at a frequency less
than twice the highest frequency in x(¢), which is less
than 2x 5 Hz, aliasing will occur. That is the recon-
structed signal has an incorrect frequency. On the
other hand sampling at a frequency greater than twice
the highest frequency in z(¢) (14 Hz > 2 x 5 Hz), the

reconstructed signal is identical to the original signal.
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Example 8.2 (Textbook Example 8-2)

Consider a nonperiodic signal xz(t¢) that has a contin-
uous spectrum X (f) with highest frequency 5 Hz as
shown. The signal is sampled at 7 Hz and 14 Hz. Plot
the spectrum of the sampled signal for each sampling
frequency.

Xs(f) = fs Z X(f —nfs)

The sampled spectrum for each sampling frequency is
as shown. For sampling at 7 Hz, overlap of the trans-
lated spectra (aliasing) occurs and X s(f) is found by
summing spectra in the overlapped regions. For sam-
pling at 14 Hz which exceeds the Nyquist rate (10
Hz), there is no spectral overlap. We have assumed
an ideal reconstruction filter with amplitude response
T = % and a bandwidth of 0.5 fs. The output spec-
trum for each case is also shown. It is clear that the
output of reconstruction filter is identical to the original
signal for sampling at 14 Hz.
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Spectrum of z(¢) X (f)
3

f
|deal Reconstruction LPF __ Xs(f) Spectrum of sampled signal, fs=7H=z

AN ANV ANEVANEVAN

| |
-33-3R886-22419-161412 -9-7-5 -202 57 9 121416 12123 262830 33

ldeal Reconstruction LPF X .(f) Spectrum of sampled signal, fs=14Hz

YANVANVANVANVAN

-23 -19 9 -5 0 5 9 19 23
Xs(f)lg(f) XS(f)]é(f)
-3.5-202 3.5 5 0 5
Output of reconstruction Output of reconstruction
filter with fs = 7THz filter with fs = 14H =z
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Interpolation

Interpolation is the process of assessing values be-
tween the sampled intervals, and is useful when the
sampling rate is increased. This may be in the form of
step interpolation (Zero-Order-Hold Sampling), Linear
Interpolation, or Sinc Interpolation

Zero-Order-Hold Sampling
In practice, analog signals are sampled using Zero-
order-hold devices that acquire a sample value and
hold it constant until the next sample is acquired. The
sampled signal resemble a staircase that remains flat
between the sample points.

Linear Interpolation

Linear Interpolation uses a triangular interpolating func-
tion which produces a linear approximation between
the sampled values.
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Example 8.3

A sampled signal is expressed by z[n] = [-1, 2, 3, 2]
forn = 0,1, 2,3 seconds, The sampling period T" =
1. Find the value of the reconstructed signal z(t) at
2.5 seconds.

(a) For step interpolation, the signal value at ¢t = 2.5
isthevalueatt =2, i.e.,, z(2.5) =3 s

(b) For linear interpolation, the signal value att = 2.5
is the average of the values att = 2 andt = 3, i.e,,
£(2.5) = 0.5(34+2) =2.5s.
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Quantization and Encoding

Digital signals are discrete-time signals which are quan-
tized in amplitude by rounding to the nearest level. En-
coding is done by representing each of the quantized
value by an indexed sequence of word of zero and
one bits that can be processed digitally. For a binary
representation, the number of quantizing levels g and
the digital word length n are related by

q=12"

The quantizing and encoding is illustrated below. where
S represents the width of the quantization interval.

Quantization = Encoded
level output

7 111 /\ S
6 110 /
5 101 / \
4 100 / \

3 011

2 010 \

1 001

0 000

T 2T 3T AT t
Quantizing and encoding
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Quantization Error

When the sampled values are quantized errors are in-
troduced in the process. No matter how fine the quan-
tization, its effects are irreversible, since the world length
must necessary be finite. Thus, analyzing the errors
introduced by quantization is important to the study of
practical DSP systems.

If the quantizing level is at the center of the interval,
the maximum value of the quantization error lies be-
tween i%, where S is the width of the quantizing in-
terval. For a very large number of quantizing inter-
val S will be sufficiently small and the signal x(¢) will
be nearly linear within the interval as shown. The er-
ror e(t) introduced by assuming x(¢) to remain in the

quantizing interval 2t is
S
e(t) = —t
2t1

as shown.
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Quantizing
|
' Center of
ST /F ~~ Quantization
|

M) t1
- R Quantizing error

Square of quantizing error

T /

—t1 0 1
The mean square error E' is given by

1 [t 1
E = —/ ' e2(a)da = —/ 162(a)da
2t]_ —1t1 t1 /0

2 2

1 rt S S
E:—/1 =) o?da ="
t1 /0 \2t; 12

E has the dimension of Watts and is regarded as
noise power. Assuming D is the maximum variation
of z(t), we have

D = max[x(t)] — min[x(t)]

or
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Since there are ¢ = 2" quantizing level, the quantiz-
ing step size is
D
S =—=D27°"
2n
Substituting in E/, we get
D2 2n

E=—2
12

It is clear that the mean-square error decreases ex-
ponentially with the A/D converter wordlength, n. It is
customary to define the signal-to-noise ratio SNR as

SNR =
E

where Ps is the signal power.
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Substituting for £, we have

Ps 242
SNR = = 12P;, D <2<"
(D2/12)2—2n ’
The SNR is usually expressed in decibels, i.e.,

SNRdB =10 |0910(12)+1O |Oglo P,—20 |Oglo D—+20n |Oglo(2)

or

SNR,5 = 10.79+46.02n410 10910 Ps—20 10910 D

This result suggests a 6-dB improvement in SNR for
each additional bit.
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Example 8.4

A sampled signal that varies between -2V and 2V is
quantized using n bits. What value of n will ensure an
rms quantization error of less than 5 mV.

The rms quantization error is vVE = 5 x 1073 or
E =25 x 107",

The range D = 4V. The mean-square error is given
by

E — D_22—2n
12
or
D? 16
n — — — — 53333.33
12E  (12)(25 x 1076)
or 2" = 230.94
In(230.94
n = 1095(230.94) = ( ) = 7.85

In(2)
Rounding up, we get n = 8 bit
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Example 8.5 (Textbook Example 8-3)
A sinusoidal signal x(t) = A coswt is sampled and
quantized. Find the SNR in decibels

The signal power of a sinusoid is

1
P, = —A?
2

A2
1010919 Ps = 10 Ioglo7 = 20log10A — 3.01

The dynamic range D is the peak-to-peak value of the
signal, i.e.,
D=2A and

20109190 D = 201091902A = 6.02 4+ 2010910 A
The SNR in decibels is given by

SNR;5 = 10.79 + 6.02n + 1010910 Ps — 2010910 D
= 10.79 + 6.02n 4+ 2010g;0 A — 3.01 — 6.02 — 20 l0g;o A

or

SNR,5 = 1.76 + 6.02n
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Discrete Fourier Transform

Discrete Fourier transform (DFT) is the mapping of a
set of IV discrete-time samples into the frequency do-
main having N harmonics. This results in a finite set
of discrete-frequency spectrum.

We found the Fourier transform of a continuous-time
nonperiodic signal as
©.@) .
X(f) = / z(t)e 27Tt gt
— 00
and its inverse Fourier transform as
@) .
o) = [ X(pel2tas
— OO
We now consider a time-limited signal with a finite
time interval [O, T']. The frequency spectrum of such
a signal is not band limited, but we can identify a
bandwidth W Hz, beyond which the signal energy is
negligible.
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Assuming a time limited signal that is also (approxi-
mately) band limited, the signal x(¢) with ideal sam-
pling having NV samples in [0, T interval can be ex-
pressed as
N-1
z(t) = > z(nAt)d(t — nAt)
n=0
where At = £ is the time between samples. Substi-
tuting for 2 (¢) in the Fourier transform formula, chang-
ing integration to summation and simplifying, we ob-
tain
N-1
X(f) = Z w(nAt)e_jzﬁant

n=0
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Since we are interested in digital signals, f is restricted

to the discrete set of values [O, 1.2, %} thus set-

ting f = % = <%, the DFT becomes

N—-1
Xp= Y apei2/N - p—01,... N-1
n=0
and the inverse Discrete Fourier Transform IDFT be-
comes

The IDFT allows to recover x,, from its spectrum.
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Discrete-Time Fourier Series (DTFS)
The Fourier series (FS) applies to the continuous-time
periodic signals. Similarly, for discrete-time periodic
signal we can obtain the discrete-time Fourier series

(DTFS) of the signal. The trigonometric Fourier series
coefficients for a CT signal were derived as follows:

1 [T
ag = — x(t)dt
To /o

2 (b
Ay = — / x(t) COS nwot dt n#0
To Jo

2 (b
an—/ x(t) sin nwot dt n#0
To Jo

For a discrete periodic signal of period T with N sam-
ples in a period the trigonometric Fourier series coef-
ficients similar to the CT signals can be obtained as

5 Nz—:l
ag = — T,
N =0
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Shannon’s theorem applied to these functions states
that if V samples are taken, then they only truly rep-
resent frequencies up to harmonic number %(i.e., half
the sampling frequency). If N is an odd number, then
% Is not an integer. In this case, simply compute har-
monics up to just below &, in other words, the high-
est possible harmonic would be % The result is
accurate for band limited signals (periodic signals). If
the above coefficients are used for time limited signals
such as a square pulse which are not bandlimited the
result will not be accurate. However, if the sampling
rate is increased the answer would be close but not

quite accurate.
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Once ag, an, and b, are computed, they are used in
the Fourier series expression to obtain x(t)

N

2
a .
x(t) = 04 Y an cos nwot + by Sin nwpt
E n=1
An alternative expression is

N

ag 2
x(t) = S -+ Z cn COS(nwot + én)
n=1

where ¢, and ¢, can be found from the following tri-
angle

bn _________
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Example 10.1
A certain continuous-time function with the fundamental frequency
of 200 Hz has the following values for 5 samples in the period.

kK . O 1 2 3 4
xp,. 3 =5 2 7 O

Number of harmonics required is n = £ = 222 =2

4
2 2
= — = —(3—-5 2 V4 0) =2.8
ag N};l‘k 5( +2+4+7+40)

The average valueis 2 = 1.4

For 5 samples in a period 27 = (2(360)

= = 72°, and we have

4 4
2 2
an = — rrcos(72n)k and b, = — 2 SIN(72n)k
5 D_cos(72n) S Dersin(r2n)

a1=§[3 cos(0)—5cos(72)42cos(72)2+7cos(72)3+(0)cos(72)4]=—-2.3305
b1:§[3 sin(0) —5sin(72)+2sin(72)2+7sin(72)3+4(0) sin(72)4] =-3.0777
or

_2_3305/% 1 = [(2.3305)2 4 (3.0777)2]z = 3.86

_ —1 2.3305
—¢1 =270 —tan™" 35755

[

! \ — 232.86°

! $1 = 127.14°
--4 -3.0777
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Similarly for the second harmonic, we have
a2:§[3 cos(0)—5cos(144)+2cos(144)2+7cos(144)3+(0) cos(144)4]=3.9305
b2:§[3 sin(0)—5sin(144)+2sin(144)2+47sin(144)3+(0)sin(144)4]=0.7265

or

co = [(3.9305)2 + (0.7265)2]5 = 3.997
_ —1 0.7265
0.7265+-- - - - - - —¢2 = tan 3.905
co | = 10.54°
|
(pp $> = —10.54°
|
3.9305

The angular frequency wy = 27(200) = 400x. Thus the ex-
pression for x(t) is

xz(t) = 1.443.86 cos(400nt+127.14°)+3.997 cos(800wt—10.5°)
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Fast Fourier Transform (FFT)

DFT applied to complex signals for large series takes
considerable time (on the order of N2) to compute. An
efficient algorithm developed by Cooley and Tukey in
1965 known as fast Fourier Transform (FFT) reduces
the number of computation considerably, The FFT is
the most important discoveries in the field of digital
signal processing. MATLAB Signal Processing Tool-
box contain two functions fft and ifft that makes it very
easy to obtain the DTFS and the inverse DTFS. For
a vector x of length IV representing one period of an
N periodic signal x,,, we use the following command
to obtain the DTFS coefficients

X = fft(x)/N
Similarly, the command
x = 1ifft(X)*N

returns a vector x that represents one period for the
time signal when the spectrum X is defined.
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MATLAB assume the summation from O to N — 1,
so the first element of x and X corresponds to zg,
and X, respectively. Since fft(x) evaluates the sum
of DTFS, division by N in fft(x) and multiplication by
N in ifft(X) is necessary. To obtain the trigonometric
DTFS coefficients a,, and by, fft(x) is divided by N /2,
and ifft(X) is multiplied by N /2.
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Example 10.2

Use The fft function to compute the DTFS coefficient
of the sampled function described in Example 10.1.
We use the following commands:

N =25; k= 0:1:N-1;

xk=1[3 -5 2 701;

C_n = fft(x_k)/(N/2);

disp([k’, C_n’])

stem(200*k, abs(C_n))

xlabel(’f’), ylabel(’|C(£)]’)

% We use ifft to reconstruct the signal
xrecon = ifft(C_n)*(N/2);

Xrecon = xXrecon.’
The result is

2.38000
-2.3305 - 3.07771
3.9305 + 0.72651
3.9305 - 0.72651
-2.3305 + 3.07771

D W N -, O
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Xrecon =
3.0000 - 0.00001
-5.0000 - 0.00001
2.0000 - 0.00001
7.0000 - 0.00001
0.0000 + 0.00001

The coefficients ag, a1, b1, ap, and b, are the same
as the answers in Example 10.1.

Note that the reconstructed signal may have a negli-
gibly small imaginary component which is an artifact
of the numerical rounding errors.
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The magnitude spectrum is as shown.

4 T 6) T v T % T b
3.51

3t
)]

251

—~
~

IC(f

1.5¢F

1_

051

O L L L L
0 100 200 300 400 500 600 700 800

f

Note that to obtain the exponential DTFS coefficients
Xn, fft(x) is divided by N, and ifft(X) is multiplied by
N, instead of the factor N /2.
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Example 10.3
Using fft Find the the DTFS coefficients for the signal

27T T
1+ 4cos(—k+ —
+4cos(T k+2)

Then use ifft to reconstruct the time-domain samples
of the signal.

The signal period is 10, we obtain the DTFS coeffi-
cients for one period using the following commands.

N =10; k= 0:1:N-1;

x = 1+ 4xcos(2*xpi/10*k + pi/3);

X = fft(x)/N;

disp([k’, X’]1)

subplot(2,1,1), stem(k/N, abs(X), ’r’)
xlabel(’£f’), ylabel(’ |X(£)]’)

HWe use ifft to reconstruct the signal

xrecon = ifft(X)*N;

xrecon=real (xrecon)’
subplot(2,1,2),plot(k/N,real (xrecon),’o’ ,k/N,x)
xlabel(’f’), ylabel(’x[n]’)

legend(’Samples from ifft’,’0Original signal’,0)
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The result is

0O ~NO Ol b WD = O W

O

Xxrecon

1.0000
1.0000
-0.0000
—-0.0000
-0.0000
0.0000
—-0.0000
—-0.0000
-0.0000
1.0000

.0000
.5819
.6765
. 9126
.6542
.0000
.4181
.6765
.9126
.6542

X [k]

+ + + + +
O OO0 00O O

. 73211
.00001
.00001
.00001
.00001
.00001
.00001
.00001
. 73211
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The magnitude spectrum and the reconstructed time-
domain samples are as shown.

2 o T T T T T T T q
15F .
§ 1¢ .
0.5 |
0 . - - - L L o
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
f
6 T T T T T T T T
o Samples from ifft >
4 Original signal
¢
2 .
c
=3
O .
) i
_4 | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9
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