
EE-371 CONTROL SYSTEMS LABORATORY

Session 7
Position Control Design Project

(PD controller – Root-locus Design)

Purpose

In this project you design and implement a position control system with a cascade PD
controller using root-locus design. The objectives of this project are:

• To design a PD compensator using root-locus designs such that the output angle
tracks a commanded position.

• To build the compensated servo plant in SIMULINK and simulate offline to
obtain the response to a square wave input and verify the design.

• To build the WinCon application, and implement and test the system on the real-
time hardware

Introduction

A common compensation technique is placing a cascade controller in the forward path.
Typical compensators are phase-lead, phase-lag, and PID controller. In Lab 5 the

 7.1

servomotor position control was achieved by means of position and rate feedback. In this
project a PD controller is designed using root-locus method.

The root-locus trajectories show the location of the roots of the characteristic equation as
one or more parameters are changed. If the root locations are not satisfactory, adding
additional poles and zeros via a cascade compensator reshapes the root locus. The
introduction of a compensator results in the characteristic equation ()cG s

1 () () ()c pG s G s H s+ = 0

0

Writing as , we have () () ()c pG s G s H s ()KG s

1 ()KG s+ =

If is the desired location of a closed-loop pole, it must satisfy the above equation,
which results in the following angle and magnitude criteria:

1s

180zi piθ θ− = −∑ ∑

product of vectror lengths from finite poles
product of vector lengths from finite zeros

K =

The above equations can be used for graphical root-locus design.

1. Servo plant modeling

In the position control experiment (Lab 5) the motor-load transfer function with position
as output was found to be

2 2

()
()

m g

a eqo

i eq m g

eq a eq

K K
R Js

V s B K K
s s

J R J

η

η
Ω

=
⎛ ⎞

+ +⎜ ⎟⎜ ⎟
⎝ ⎠

 (7.1)

or

()
() ()

o

i m

s a
V s s s b

mθ
=

+
 (7.2)

Where
2 2

, m g eq m g
m m

a eq eq a eq

K K B K K
a b

R J J R
μ μ

= = +
J

 (7.3)

The open-loop block diagram with the s-domain voltage as input and ()iV s ()o sθ as
output is shown in Figure 7.1.

 7.2

()o sΩm

m

a
s b+

1
s

()o sθiV

Figure 7.1 Open-loop plant transfer function.

The s-domain unit step response is

()
1() m

o
m

as
s s b s

θ =
+

The final value of the response is
0

lim () lim ()
s

o ot
t s sθ θ

→→∞
= = ∞ . That is, the response is

unbounded.

1.1 Position control

In order to control the output position to follow an input command, consider the addition
of a PD controller ()c PG s K K s= + D

()
m

m

a
s s b+P DK K s+

()i sΩ ()o sΩ

− ()cG s

Figure 7.2 closed-loop control system with PD controller.

The PD controller is equivalent to the addition of a simple zero at P

D

Ks
K

= − to the open-

loop transfer function. This would shift the loci towards the left-half s-plane which
improves the transient response .A problem with PD compensation is that the
compensator gain continues to increase with frequency. If high-frequency noise is present
in the system, the PD compensator will amplify this noise and a phase-lead controller
may be used in place of the PD controller.

2. Pre Laboratory Assignment

Evaluate , and of the plant transfer function as given by (7.3). The servo plant
parameters are given in the position control experiments (Lab 5). If you have performed
Lab 5 you have these values. If you have not performed the position control project (Lab
5) you must derive the plant transfer function, verify the above equations and include
modeling with this project. Otherwise give reference to Lab 5.

ma mb

Assuming a simple proportional controller , draw the root locus to scale for K

()
() m

m

a KKG s
s s b

=
+

 7.3

Give all pertinent characteristics of the loci such as number of asymptotes, breakaway
and/or re-entry points. Indicate the loci directions for increasing K by arrows. Specify
range of K for closed loop system stability.

2.1 Position control design

Using root-locus graphical method design a PD controller to meet the following time-
domain specifications:

• Step response dominant poles damping ratio 0.707ζ =
• Step response dominant poles time constant 0.02τ = sec

Since the characteristic equation is a second order, PK and DK can be found by equating
the coefficients of the characteristic equation with the standard second-order
characteristic equation. However, to reinforce the root-locus design method for higher
order systems, you must design the PD controller using root-locus design technique (see
Example 2 in Tutorial III Root Locus Design). Check your design using rldesigngui
program.

The SIMULINK simulation diagram named “Lab7_Sim.mdl” is constructed as shown in
Figure 7.3.

20 Degrees
1Hz Square

Deg-Rad

am
s bm+

1
s

Rad-DegIntegratorPID Controller with
Approximate Derivative

Set Divisor (N) to 230 - 300

Servo Plant Transfer Fcn

pi/180 +
−

180/pi

theta_o_sSignal
Generator

PID

Simulink Simulation Diagram for Position Control

Mux

Figure 7.3 Simulink diagram for the servo plant position control

se a Signal Generator with Amplitude 20 degrees and Frequency 1 Hz. Get the PID

n
e

(N) to 300. th am nd

re

Simulate and use ‘plotscope’ function to capture the scope plot and produce a Figure plot

U
Controller with Approximate Derivative for the PD controller. This is found in
Simulink Extras /Additional Linear library. In the Simulink block diagram you ca
replace , , ,am bm KP and KD with their values and set KI to zero, and the Derivativ
Divisor From e Simulink/Simulation Par eters select the Solver page a
for Solver option Type, select Fixed-step and ode4 (Runge-Kutta) and set the fixed step
size to 0.001. Actually a Variable-step selection with auto or a smaller Max step size
would produce more accurate results, but because in the implementation diagram we a
using a uniform sampling rate of 0.001 second, we use the same fixed-step size of 0.001
second for integration.

.
To do this, type plotscope at the MATLAB prompt, then click on the Scope Figure

 7.4

http://www.saadat.us/download/ee371lab_manual/Tutorial_III_Root_Locus_Design.pdf
http://www.saadat.us/matlabgui.htm

(outside the plot area) and hit return you will have a Figure print. You can add label and
legend commands or edit the graph, label as Figure 7.4.

All the prelab calculations, design and simulation must be completed prior to the
laboratory session. The plants transfer function and the controller values must be checked
and verified by your instructor. Also complete the implementation diagram as outlined in
section 3.1 and 3.2.

3. Laboratory Procedure

When you have finished testing your model in SIMULINK, it has to be prepared for
implementation on the real-time hardware. This means the plant model has to be replaced
by the I/O components that form the interfaces to the real plant.

3.1 Creating the Subsystem Block for the Interface to SRV02

The Encoder_Tach.mdl subsystem, which was created in the position control experiment
(Lab 5), is shown in Figure 7.5(a). If you if you don’t have this subsystem block follow
the procedure in Section 3.1 Lab 5 to configure the required interfaces to SRV02.

Pos [rd], Encoder

d(Pos)/dt [rd/s], Encoder

Vel [rd/s],Tacho

Encoder & Tacho input

Figure 7.5(a) Interface to the SRV02 Feedback Signals.

If you double-click on the above subsystem it will display the underlying system as
shown in Figure 7.5(b).

 7.5

SRV02 Encoder Input Count to rad

Differentiator

Pos [rd]
-2*pi/4096 3

2
d(Pos)/dt [rd/s],

Encoder

250
250

s
s +

1000/1.5
250

250s +

Quanser Consulting
MQ3 ENC

SRV02 Tach Input

2*pi/60 1/14 1
Vel [rd/s],

TachoV to RPM RPM to [rd/s] 1/Gear ratio Low-pass filter

Quanser Consulting
MQ3 ADC

Figure 7.5(b) Content of the subsystem Encoder-Tach.

3.2 Creating the Implementation model

The implementation model can be added on the previously constructed SIMULINK
model. This would enable you to obtain the simulation and actual results simultaneously.
Open Lab7_Sim.mdl (your simulation model), save it under a new name (say
Lab7_Imp.mdl). Remove the MUX block.

Start constructing the implementation diagram below the simulation diagram. Copy the
Encoder_tach.mdl (constructed in part 3.1) to the clipboard and paste it on your
implementation model as shown in Figure 7.6. Get the Analog Output block from the
Quanser MultiQ3 and set the Channel Use to 0 as is in the wiring diagram. Use a Signal
Generator with Amplitude 20 degree and Frequency 1 Hz. Add the PID controller with
Approximate Derivative to the signal coming from the Motor Encoder, complete the
feedback loops and connect the resulting signal to the Quanser Analog output.
Place as many Scopes as you like to monitor the phase angle, velocity etc. Your
completed model should be the same as shown in Figure 7.6. Set KI to zero, the
Derivative Divisor (N) to 300, and gains KP and KD to the values found in part (2.1), or
run the m-file that returns the values of KP and KD. The gains in Simulink Simulation
diagram are renamed to KP1 and KD1, so that if the value of the variables KP and KD
are changed at the MATLAB prompt for fine tuning, the values in the Simulation
diagram are not changed. You may save the augmented model under the file name say,
“Lab7_Imp.mdl”.

 7.6

20 Degrees
1Hz Square

Deg-Rad

am
s bm+

1
s

Rad-DegIntegratorPID Controller with
Approximate Derivative

Set the Divisor (N) to 230 - 300

Servo Plant Transfer Fcn

pi/180 +
−

180/pi

theta_o_sSignal
Generator

PID

Simulink Simulation Diagram for Position Control

Quanser Consulting
MQ3 DAC

Analog Output
Channel 0

Vel [rd/s] Tach

d(pos)/dt {rd/s],
Vel (Encoder)

Pos [rd]

180/pi

theta_o

Vel rd/s

Encoder and Tacho input

20 Degrees
1Hz Square

Deg toRad PID Controller with
Approximate Derivative

Set the Divisor (N) to 230 - 300

pi/180 +
−

Signal
Generator

PID

Simulink Simulation Diagram for Position Control

1/5

Vel rd/s Enc

theta_i

theta_is

Rad to Deg

Cable 5

Figure 7.6 SIMULINK Simulation and Implementation diagram

.3 Wiring diagram

sing the set of leads, universal power module (UPM), SRV02 Servomotor, and the

From To Cable

3

U
connecting board of the MultiQ3 data acquisition board complete the wiring diagram
shown in Figure 7.7 as follows:

Encoder on MultiQ/ 5 pin Din to 5 n SRV02 Encoder 0 pin Di
Motor on SRV02 UPM/To Load 6 pin to 4 pin Din, Gain 5 Cable
D/A #0 on MultiQ /A UPM – From D RCA to 5 pin Din
A/D # 0, 1, 2, 3, on MultiQ UPM- TO A/D 5 pin Din to 4xRCA

 7.7

From D/AEncoder

SRVO2-
Motor

Analog
Output #0

D/A

S3 TO A/D

To Load

Analog
input
A/D3 2 1 0

Encoder #0

UPM
MultiQ

Y
W
R
B

From
D/A

Cable 5

Figure 7.7 Wiring diagram for servo motor position control system.

Before proceeding to the next part request the instructor to check your electrical
connections and the implementation diagram.

3.4 Compiling the model

In order to run the implementation model in real-time, you must first build the code for it.
Turn on the UPM. Start WinCon, Click on the MATLAB icon in WinCon server. This
launches MATLAB. In the Command menu set the Current Directory to the path where
your model Lab7_Imp.mdl is. Before building the model, you must set the simulation
parameters. Pull down the Simulation dialog box and select Parameters. Set the Start time
to 0, the Stop time to 5, for Solver Option use Fixed-step and ode4 (Runge-Kutta) method
set the Fixed-step size, i.e., the sampling rate to 0.001. In the Simulation drop down menu
set the model to External. Make sure all the controller gains are set. Start the WinCon
Server on your laptop and then use Client Connect, in the dialog box type the proper
Client workstation IP address. Generate the real-time code corresponding to your diagram
by selecting the “Build” option of the WinCon menu from the Simulink window. The
MATLAB window displays the progress of the code generation task. Wait until the
compilation is complete. The following message then appears: “### Successful
completion of Real-Time Workshop builds procedure for model: Lab7_Imp”.

3.5 Running the code

Following the code generation, WinCon Server and WinCon Client are automatically
started. The generated code is automatically downloaded to the Client and the system is
ready to run. To start the controller to run in real-time, click on the Start icon from the
WinCon Server window shown in Figure 7.8. It will turn red and display STOP. Clicking
on the Stop icon will stop the real-time code and return to the green button.

 7.8

Figure 7.8 WinCon Server

If you hear a whining or buzzing in the motor you are feeding high frequency noise to the
motor or motor is subjected to excessive voltage, immediately stop the motor. Ask the
instructor to check the implementation diagram and the compensator gains before
proceeding again.

You can also change the controller gains on the fly (i.e. while the controller is running in
real-time). To do so, double click on the Simulink Implementation gain block, change to
the desired value, and select Apply, or OK. Note the changes in the real-time plots.
Increasing will increase the overshoot, but it would reduce the offset. KP

3.6 Plotting Data

You can now plot in real-time any variables (e.g. angles, velocities) of your diagram by
clicking on the “Plot/New/Scope” button in the WinCon Server window and selecting the
variable you wish to visualize. Select “theta_o” and click OK. This opens one real-time
plot. To plot more variables in that same window, click on “File/Variables…” from the
Scope window menu. The names of all blocks in the Simulink model diagram appear in a
Multiple. Select Variable Tree. You can then select the variable(s) you want to plot. In
this case, select, for example, “theta_i” and “theta_o_s. In the Scope pull-down menu,
using Freeze you can freeze the plot, and Update/Buffer can be used to change the final
time to display fewer cycles. From the File menu you can Save and Print the graph.
Choose Save As M-File, and save the plot as M-file (say Figure7_9.m). Now at the
MATLAB prompt type the file name to obtain the MATLAB Figure plot. You can type
“grid” to place a grid on the graph or edit the Figure as you wish.

Zoom in to obtain the comparison between the simulated response and the actual
response.

Use File Save, this saves the compiled controller including all plots as a .wpc (WinCon
project) file. In case you want to run the experiment again, from WinCon Server use
File/Open to reload this .wcp file, and run the project in real time independent of
MATLAB/Simulink.

To prevent excessive wear to the motor and gearbox run the experiment for a short time.

 7.9

 7.10

4. Project Report

Discuss the assumption and approximations made in the modeling the servomotor. In the
report show the closed-loop system block diagram and your analysis. Comment on your
results; how does experimental response compare to simulated response? Discuss the
reason for any deviation in the actual transient response and the simulated response. What
is the system type, and what is the theoretical steady-state error? Estimate the actual
steady-state error if any, and discuss the reason for the steady-state error. A brief
discussion of frictional forces and the amplifier saturation is included in the Appendix at
the end of Lab 5, which you may find helpful for preparing the discussion of results in
your project report. After the completion of this lab you should be confident in tuning this
type of controller to achieve a desired response.

	EE-371 CONTROL SYSTEMS LABORATORY
	Session 7
	Position Control Design Project

	Introduction
	3.1 Creating the Subsystem Block for the Interface to SRV02
	Figure 7.7 Wiring diagram for servo motor position control system.

