
EE-371 CONTROL SYSTEMS LABORATORY

Session 4
Modeling and Digital Simulation Case Studies

Purpose

One of the objectives of this session is to get you acquainted with the basics of
SIMULINK, which is a graphical modeling, simulation, and prototyping environment
used extensively in industry. We will not be able to cover the vast capability of
SIMULINK with few examples, and you are expected to explore various features and
graphical programming techniques of SIMULINK on your own. The other objectives of
this lab are to find the mathematical model for some basic physical systems, to obtain a
digital simulation diagram for the resulting differential equations, and to obtain the
system’s step response and investigate the effect of damping on the system response.

Reference Computational Aids in Control Systems Using MATLAB, H. Saadat,

McGraw-Hill 1993. An updated version is on Saadat’s website for EECS
students. The password is available from your instructor.

Introduction

The dynamic performance of physical systems is obtained by utilizing the related
physical laws governing the systems. Many dynamic systems contain energy storage
elements such as masses and springs in the mechanical system, or inductors and
capacitors in an electric circuit. Because of the principle of conservation of energy,
instantaneous changes in system variables are not possible. Therefore, the system
variables will go through some transients before settling to their steady-state values.

All physical systems are nonlinear to some extent. In order to model the system with
linear time-invariant differential equations for transfer function and state space model, the
system must first be linearized, or its range of operation be confined to a linear range.

The next step in designing a practical control system is to simulate the model on a
computer to obtain the system response to various signals and disturbances. Next,
introduce appropriate controllers to achieve the desired system response. This process of
design and analysis is repeated until a satisfactory control system is obtained before
implementing the design on the hardware.

One of the most powerful tools for modeling and simulation of dynamic systems is
SIMULINK, a toolbox extension of MATLAB. SIMULINK is very easy to learn. A
system in block diagram representation is built easily and the simulation results are
displayed quickly. Simulation algorithms and parameters can be changed in the middle of
a simulation with intuitive results, thus providing the student with a ready-access learning
tool for simulating many of the operational problems found in the real world.

 4.1

http://www.saadat.us/ee371.htm

SIMULINK is particularly useful for studying the effects of nonlinearities on the
behavior of the system, and as such, it is also an ideal research tool. Simulink has many
advanced features for simulating a complex control system, such as the creation of the
new sub-system blocks and masking blocks through M-files, C programs, or SIMULINK
block diagrams, for easy integration in your system’s model. This allows an extension of
the SIMULINK graphical functions to suit your own needs of analysis and design. The
SIMULINK demos and User’s Guide for SIMULINK are very helpful in explaining the
advanced usage and extension of SIMULINK block library. Also refer to Chapter 1 in
“Computational Aids in Control Systems Using MATLAB, Hadi Saadat”. Get the
password to download this supplementary textbook from the author’s personal web page.

Case Study 1 Mechanical Translational System

Consider a simple mechanical system consisting of a mass, a spring and a shock absorber
known as dashpot or piston shown in Figure 4.1 (a). Where M is the mass, B is the
frictional coefficient, is the spring constant,K ()f t is the external force, ()x t the
displacement and the velocity. Three forces influence the motion of the mass,
namely the applied force, the frictional force, and the spring force as shown on the free-
body diagram in Figure 4.1(b)

(u t)

B

K M

HS

f
dxB
dt

2

2

d xM
dt

kx ()f t

Figure 4.1 (a) Mechanical translational system. (b) Free-body diagram,

Applying Newton’s law of motion, we have

2

2

() () () ()d x t dx tM B Kx t f
dt dt

+ + = t (4.1)

The transfer function model is obtained by taking the Laplace transform, which results in

2

() 1()
()

X sG s
F s Ms Bs K

= =
+ +

 (4.2)

As stated in the lecture for more complicated mechanical systems it is easier to draw the
electric circuit force-voltage analogy in place of the free-body diagram. In force-voltage

analogy, mass M is analogous to inductance, spring compliance 1
K

 is analogous to

capacitance, frictional coefficient B is analogous to resistance, and velocity is analogous
to current. The key point in drawing the electric circuit analogy is to identify the
displacement or velocity of each element and draw the circuit accordingly. The circuit
can be drawn in the s-domain to find the transfer function or in the time-domain suitable

 4.2

for obtaining the state space model. The electric circuit analogy for this mechanical
system is shown in Figure 4.2.

B M

K()f t

()u t
+

−

Figure 4.2 Electric circuit analogy

Applying Kirchhoff’s voltage law, we have

2 0

() () () ()
tdu tM Bu t K u t f t

dt
+ + =∫

Since ()() dx tu t
dt

= , we have

2

2

() () () ()d x t dx tM B Kx t f
dt dt

+ + = t

Which is the same as (4.1). Equation (4.1) can also be written in state space form by
selecting the two state variables as displacement and velocity, i.e., 1() ()x t x t= and

2
()() () dx tx t u t

dt
= = , then

1
2

2
1 2

() ()

() 1 () () ()

dx t x t
dt

dx t K Bf t x t x
dt M M M

=

= − − t
 (4.3)

and we define the output as the two state variables, namely 1 1()y x t= and 2 2

In matrix form,
()y x t=

() () (), and () () ()x t Ax t Bu t y t Cx t Du t= + = +& , the state and output
equations are

1 1 1

2 2 2

() () () ()0 1 0 1 0
(), and

() () () ()1 0
1

21
x t x t y t

f t
x t

x t x t y tK M B M M
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

& x t
⎤
⎥ (4.4)

The simulation diagram for equations in (4.3) is shown in Figure 4.3

 4.3

1
s

1()x t1 ()M f t 1
s

B M

−

K M

2 1() ()x t x t= &
2 ()x t&

−

Figure 4.3 Simulation diagram for the mechanical system. Case study 1

With the system initially at rest, a force of () 32f t = Newton is applied at time .
Mass

0t =
2M = Kg, the spring constant 32K = and the frictional coefficient B can be

adjusted to obtain a desirable response.
The system characteristic equation given by (4.2) is

2 0B Ks s
M M

+ + = (4.5)

This is the same form as the standard second-order transfer function

2 2 n ns sζω ω+ + 2 0= (4.6)

1. Perform the following analysis:

(a) The dashpot damping is adjusted to 2B = N-s/m. Determine the natural frequency of

oscillation nω , damping ratio ζ ,
21e

ζπ

ζ
−

−=. . 100P O × , peak time
21

p

n

t π
ω ζ

=
−

, and

settling time 4st τ≅ .
(b) The dashpot damping is adjusted to 56B = N-s/m. Determine, damping ratio ζ ,
response time constants 1τ and 2τ , and settling time 1 24 max(,)st τ τ≅ × .

(c) Determine the frictional coefficient B for the response to be critically damped. What
is the response time constant and approximate settling time?

2. Digital Simulation using SIMULINK

To create a SIMULINK block diagram presentation of the system shown in Figure 4.3
double click on the SIMULINK icon on the MATLAB toolbar, or type simulink at the
MATLAB prompt. Click on the create a new model icon on the SIMULINK toolbar. An
untitled window for designing and simulating a new model will open. Double click on the
Simulink library icon; this will open nine subsystems libraries. Open the Source Library
and drag the Step Input block to the open new model window. Double click on the Step
Input to open its dialog box, set the parameters Step time to 0, and Final value to 32. Get
two integrators from the Continuous library, three Gain blocks on one Sum block from
the Math Library, one Scope and one XY Graph from the Sink library, one Mux block
from Signals and Systems library. Open the Sum block dialog box and enter the required

 4.4

summing point signs +--. Once you have dragged all the required blocks and placed them
on the new model window, join the in-ports and out-ports to create the simulation model.
The purpose of Mux block (Multiplex) is to combine the velocity and displacement
signals into a composite signal so as to display both signals on one Scope. XYGraph is
used to display the state trajectory, i.e., velocity versus displacement plot. Connect 1x to
the first input and 2x to the second input of the XY Graph. Open the XY Graph dialog
box, set the x-axis limits to 0, 2, the y-axis limits to and Sample time to 0.01. An m-
file named MSFanimation.m has been developed for animating the motion of the mass-
spring-friction system during simulation. To add this animation, get an S-Function block
form the functions & Tables library, place it on your model window and connect its input
terminal to the signal coming from the output of the Mux block. Make sure that you have
obtained MSFanimation.m and InAmin.m files from your instructor and placed it on a
folder in the current directory. Open the S-Function block for its name enter
MSFanimation, and for the S-Function parameter enter 0.01. Set the gain blocks to the
given values and the damping coefficient specified in part (a) above.

4m

Solver page
Before, starting simulation, you must set the simulation parameters. Pull down the
Simulation dialog box and select Simulation Parameters. Set the start time to 0 and the
stop time to a suitable value. For solver option select Variable-step and any of the
Continuous integration routine such as ode45 or ode23. For more accurate response you
may change the Relative tolerance from 1e-3 to 1e-5. If you select Fixed-step, again
make sure you select a Continuous integration routine such as ode4 (Runge-Kutta). You
can also change the step size from auto to small value such as 0.0001. Follow the same
procedure in the remaining case studies in this lab and make sure the Solver option is not
set for discrete.

Simulate and obtain a print of the Scope. The scope yellow trace will not print well. Also,
the Simulink XY Graph cannot be printed. A Script m-file named ‘plotscope’ has been
developed which captures the scope plot and produces a Figure plot. At the MATLAB
prompt type

>> plotscope
then click on the Scope Figure (outside the plot area) and hit return you will have a
Figure print. You can add label and legend commands or edit the graph. You can use this
procedure for the XY Graph or the animation plot.

An alternative way to obtain a Figure plot is to place two To Workspace blocks from the
Sink library and connect their inputs to 1x , and 2x signals, and defining x1 and x2 for the
variables. The time array can be obtained by feeding a Clock block into another To
Workspace block and defining a variable t for time. After performing the simulation you
can use plot function to obtain the desired Figure plot.

Repeat the simulation for the value of B given part (b) and the value determined in part
(c) above. Document the plots obtained for the above three cases, determine and

 4.5

summarize the time-domain specifications for each case. Comment on the nature of each
response and discuss the effect of damping coefficient on the resulting response.

MSFanimation

Scope

Mux

B/M

S-Function

Step

K/M

() 32 ()f t u t=

1
s

Sum

+

−
−

1
s

XY Graph

1/M Integrator2Integrator1

x1x2
Displacement

Velocity

Figure 4.4 SIMULINK diagram for the mechanical system. Case study 1

Case Study 2 – Simple Pendulum

Consider the simple pendulum illustrated in Figure 4.5 where a mass of kg is hung
from a hinge by a rigid rod of length l meters. The rod is light enough that its mass can
be neglected. The rod is displaced by angle

m

θ radians from the equilibrium position.

mg

l

θ

sinmg θ

Figure 4.5 Simple Pendulum

Assume a viscous friction for the motion with a damping coefficient of B Kg-s/m. The

tangential velocity of the mass is dl
dt
θ . The tangential forces acting to restore the

pendulum to equilibrium are

 4.6

sin dmg BlTF
dt
θθ= − −

Where is the gravitational acceleration. Also from Newton’s law, we have g

2dF ml 2T dt
θ

=

Combining the above equations, we get
2

sin 0d B d gθ θ θ+ + = 2dt m dt l
 (4.7)

Equation (4.7) is nonlinear because of the sinθ term.

We can now write the above equation in state variable form. Let 1x θ= , and

2 x θ= & (angular velocity), then

1 2

2 2 1

x x

m l

=&
 (4.8)

The simulation diagram for equations in (4.8) is shown in Figure 4.6

sinx B gx x= − −&

1
s

1()x t1
s

B m

−

1

x2 1() ()t x t= &
2 ()x t&

−

sin ()g x t
l

Figure 4.6 Simulation diagram for the pendulum. Case study 2

mass m is displaced from the equilibrium by 0.5 radiansThe) at time .
ass Kg, the rod length is

(28.65o 0t =
 m = 0.5 0.613l = m and the gravitational accelerationM is 9.81

ictional coef sidered:

) Kg-s/m

rag
n a n term,

2m/s ases of fr. Two c ficient will be con

 0.05B =(a
(b) 4.0B = Kg-s/m

Create a SIMULINK block diagram presentation of the system shown in Figure 4.5. D
all the required blocks and place them o ew model window. For the nonlinear
get the Fcn block from the Function & Tables library. Use “u” for the input variable
name, e.g. 16*sin(u). Specify the gain /B m and connect all blocks to create the
simulation model shown in Figure 4.7. Open the last integrator dialog box and set the
initial condition to 0.5 for the angular displacement. The initial velocity is zero.
Therefore, set the Initial condition parameter for the first integrator to 0. Place one scope

 display the angle to θ (signal 1x) and another scope to display the velocity signal 2x . Us
a XYGraph to display the state trajectory, i.e., velocity versus displacement plot.

e
 Connect

 4.7

1x to the first input and 2x to the second input. Open the XY Graph dialog box, and set
the x-axis limits to , 0.5, the y-axis limits to 5− 2− , 2 and Sample time to 0.01.

PenAnimation

Theta

Mux

B/m Fcn

S-Function

1
s

Sum
−
− 1

s
x2 x1

XY Graph

9.81/0.613*sin(u)

Integrator2Integrator1

omega

Figure 4.7 SIMULINK diagram for the pendulum. Case study 2

An m-file named PenAnimation.m has been developed for animating the pendulum swing
during simulation. To add this animation, get a Mux block with two inputs. Connect 1x to
the top inport and 2

x to the lower inport. Next get an S-Function block from the

Functions & Tables library, place it on the model window and connect its in-port terminal
to the signal coming from the Mux block. Make sure that you have obtained this m file

 enter P eter enter

e
nce, the system is said to be stable. Is the system stable

from your instructor and placed it on a folder in the path of MATLAB. Open the S-
Function block, for the name enAnimation and for the S-Function param
0.01.

(a) The frictional coefficient 0.05B = Kg-s/m.

Simulate and print the zero-input response (natural response) for the angular
displacement and state trajectory. You may want to reduce the simulation final time to a
suitable value. Comm nt on the nature of response. When a system returns to its
equilibrium point after a disturba
about its equilibrium point 0θ = ? How would you describe the system
damping coefficient

 stability if the
B were neglected? plotsope Use to capture the Scope trace and the

XY Graph.

(b) Repeat for the frictional coefficient 4B = Kg-s/m.

Linearization

Many control systems are designed to return to their equilibrium position w en subjected

mall distur mall deviation
quilibrium point. The nonlinear differen tion of

al angle of deflection is small.

h
to a s bance. Nonlinear systems are often linearized assuming s
from the e tial equation describing the mo
the pendulum can be linearized if the initi

 4.8

Let 0θ θ θ= + Δ , substitute in (4.7) and expand the sine term. For small θΔ
assumingsin θ θΔ Δ� , cos 1θΔ � , and 0cos 1θ � , show that (4.7) results in the
linearized differential equation given by

2

2 0
dt m dt l

θ+ + Δ = (4.9)

This approximation is reasonably accurate for / 4 / 4

d B d gθ θΔ Δ

π θ π− ≤ ≤ .

(c) The state variable equation in terms of the small changes θΔ and θΔ & is the same as
(4.8), except 1in s x is replaced by 1x . Copy the SIMULINK nonlinear model and paste

me model window, replace the Fnc block with a gain block and set the
parameter to the value given by /g l . Eliminate the s-function in the duplicate model. In
order to v

 it
on the sa

ali e linearized l use a Mux block with two inputs and connect its in-
ports to the

date th
1

mode
x signal of

 each model and a Scope to its out-port terminal. Simulate for
0.05B = in both models and obtain the response. State if the linearized model response is

in close agreement with the nonlinear model. The characteristic equation of the linearized
model is

2 0B gs s
m l

d) For the given values of l , and m , find the value of

+ + = (4.10)

B for criticall(y damped response.

switch, relay, deadzone, backlash, rate
other nonlinear functions. These are very useful for studying the effects of nonlinearities

study deals with the simulation of a nonlinear
differential equation. The angular displ

Set the B to this value in both models and repeat the simulation. Comment on the
response.

Case Study 3 – Nonlinear Differential Equation with Saturation

One of the useful features of SIMULINK is the availability of nonlinear blocks, such as

-limiter, saturation, Coulomb friction, and many

on the behavior of the system. This
acement of a dynamic system is given by

2

02dt dt
4 sin 30 ()d d a u tδ δ δ+ + = (4.11)

where is a unit st

12)

and

()u t ep input and

0

0

35.6 for 0
15 for

c

c

a t t
a t t

= ≤ ≤
= ≤ ≤ ∞

 (4.

δ is constrained as follows
2 2π δ π− ≤ ≤

 is a threshold switching time. Where large value of may result in an unbounded
 (4.13)

ct ct
response. Transforming to state variable form, let 1x δ= , and 2x δ= & , then

1 2x x

2 0 1 2sin 4 30 ()x a
=
= −

&

&
 (4.14)

x x u t− +

 4.9

The SIMULINK diagram for the above system is shown in Figure 4.8. Equation (4.12) is
represented by the Switch block and equation (4.13) is represented by the Saturation
block.

DeltaStep

x1

1 ()u t
1
s

Sum

+

−
−

1
s

Gain integr 2integ 1

30

35.6*sin(u)

15*sin(u)

Saturation

x'1=x2x'2

0 ct t≤ ≤

ct t≤ ≤ ∞

Figure 4.8 SIMULINK diagram for the Case Study 3.

onstruct the above Simulink diagram, and in Step block set the

4

Step time to 0, Final
ters dialog box, set the Stop time to 5 seconds and

lect ode45. Obtain the response for

C
time to 1. Open the Simulation Parame

 0.4ct = , and 3ct =se seconds. Comment on the

his fourth study deals with the classic problem of balancing an inverted pendulum. This
s ems that

t

anced by eans of a force applied
to the cart. That is, the cart must be moved in such a way that the pendulum is in upright
position. In a physical system there would be sensors to measure the position and velocity
of the cart and the angle

behavior of the response for each case.

Case Study 4 – Inverted Pendulum

T
study demonstrates the control of an inherently un table system of balancing syst
occurs in the areas of missile stabilization and robotics. This study also demons rates the
Linearization of a nonlinear system.

Figure 4.9 shows an inverted pendulum of length l and mass m supported by a
frictionless pivot on a cart of mass M. It is to be bal m u

θ measured from sition. This is also a model of
the attitude control of a space booster on takeoff.

 the vertical po

 4.10

mg

l

θ

u

x

Figure 4.9 Inverted Pendulum on a cart.

 condition is when

This is similar to the balancing of a broomstick on the palm of your hand. The
equilibrium , and ()tθ& turns to zero. The visual location of y

stick and the proper movement of your han
()tθ re our

hand and the position of the broom d is the
required feedback without which it is not possible to balance the broomstick.

The differential equations describing the motion of the system are obtained by summing
the forces on the pendulum, which result in the followi

ng nonlinear equations.

2

2

() (cos) (sin)

(cos) sin

M m x mL mL u

mL x mL mgL

θ θ θ θ

θ θ θ

+ + = +

+ =

&& &&&

&&&&
 (4.15)

 (a) Linearize the above equations in the neighborhood of the zero initial states. Hint:

ubstitute S θ for sinθ , 1 for cosθ and 0 for 2θ& . With the state variables defined as
1x θ= , 2x θ= & , 3x x= , and 4x x= & , show that the linearized state equation is

1 1

2 2

3 3

4 4
0 0 0

0 1 0 0 0

0 0 0

0 0 0 1 0
1

x x
M mx xg 1

ML ML ux x

m

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎢ ⎥ ⎢ ⎥⎢ ⎥ −
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ = +⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ − ⎥⎦

&

&

& (4.16)

 to have all the state variables available as the output, we define the C matrix

s an identity matrix and D is a

⎢ ⎥
⎢ ⎥

gx xM M⎢ ⎥ ⎢⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣&

If we want
4 1×a zero matrix

 4.11

1 0 0 0⎡ ⎤ ⎡0

0 0 0 1 0⎣ ⎦

0 1 0 0 0⎢ ⎥ ⎢ ⎥
 D

0
C ⎢ ⎥ ⎢ ⎥= =

⎢ ⎥

⎤

⎢ ⎥
⎣ ⎦

 (4.17)
0 0 1 0⎢ ⎥
⎢ ⎥

(b) The parameters of the inverted pendulum are 4M = kg, 0.2m = kg, 0.5L = m, a

9.81g = m/s. In a MATLAB script file define the system parameters and the A, B, C,
matrices.

M = 4; m = 0.2; g =9.81; L =.5;
A = [0 1 0 0
 (M+m)/(M*L)*g 0 0 0

 0 0 0 1
 -m/M*g 0 0 0]

B = [0; -1/(L*M); 0; 1/M],

nd
 D

% Column vector
C = eye(4), % Identity matrix
D = zeros(4, 1) % Column vector

 x_0 = [0.1 0 0.1 0];

Save the file as Lab4CS4aData.m

Launch Simulink, open a new model, get the State-Space block from the Continuous
library and construct the above state model. Double click on the State-Space block to
open its dialog box and for parameters type A, B, C, and D. Note that MATLAB is case
sensitive. For the initial condition type, [0.1 0 0.1 0] or x_0. In the Simulation
Parameters dialog box set Start Time to 0, Stop Time to 3 second. For Solv option use a
variable step ls,
nd use two scopes to displa

er
 size and ode45 algorithm. Connect a Demux block to separate the signa

a yθ and x . Get an Inport block from the Source library and
rt block from the Sink library and connect it

 the signal fo
use it as an input terminal. Also get an Outpo
to r θ as shown in Figure 4.10. These terminals will enable us to find the
system transfer function from the Simulink diagram.

x Ax Bu
y Cx Du= +
= +&

Theta

Out 1
2

Demux

State-Space Terminator 2

Terminator 1

In 1
1

xDemux

Figure 4.10 Simulink block diagram for the Inverted Pendulum.

 4.12

Save the Simulink model as Lab4CS4a.mdl.

Run the script m-file Lab4CS4aData at the MATLAB prompt to calculate the A, B, C,
and D matrices. These values are now defined and are available in Simulink. Start the
Simulation in SIMULINK and obtain a plot of θ and x . Com of the

 linm to extract a linear model in state
ariables or as a transfer function model using the Simulink file name as argument. At the

n

You may have found that the angle

ment on the stability
system. MATLAB provides the function od
v
MATLAB prompt type the following commands to obtain the linearized transfer functio
model, and roots of the characteristic equation.

[num, den]=linmod(‘Lab4CS4a’)
r = roots(den)

θ increases without limit, i.e. the response is

unbounded. Also you may find
again confirms an unbounded response and we say that the system is unstable, that is, the

.

) The purpose is to design a control system such that for a small initial disturbance the
pendulum can be broug

 that a root of the characteristic equation is positive. This

inverted pendulum will fall over unless a suitable control force via state feedback is used

(c

ht back to the vertical position (0θ =), and the cart can be
brought back to the reference position (0x =).

One approach in modern control systems, accomplished by the use of state feedback, is
nown as pole-placement design. The pole-placement design allows all roots of the

system characteristic equation to be placed in desired locations. This results in a
regulator with constant gain vector. In pole-placement design the control is achieved
by feeding back the state variables through a regulator with constant gains. Consider the
control system presented in the state-variable form

k

K

() () ()
() ()

x t Ax t Bu t
y t Cx t

= +
=

&
 (4.18)

Consider the block diagram of the system shown in Figure 4.11 with the following state
feedback control

9)
here

.

() ()u t Kx t= − (4.1
 Kw is a matrix of constant fe

to be zero. The purpose of this system is
1k × edback gain. The control system input is assumed

 to return all state variables to values of zero
when the states have been perturbed.

Plant

nK− −

()u t

2K

1K

Plant
− ()nx t

1()x t2 ()x t
L

()y t

 4.13

Figure 4.11: Control system design via pole placement.

Substituting (4.19) into (4.18), the closed-loop system state-variable representation is

() [] () ()fx t A BK x t A x t= − =& (4.20)
he design objective is to find tT

th
he gain matrix such that the characteristic equation for

e controlled system is identical to the desired characteristic equation. The derivation is

Af] = p the pole placement design. A, B, C are
system esired closed-loop poles. This
functio o system matrix Af. Also, the

ent design.
er(A B, P) is for single input systems, and function K = place(A, B,

i it is f

An asp e the custom
made fu controller to
place th

M = 4; m = 0.2; g =9.81; L =.5;
A = [0 1 0 0
 (M+m)/(M*L)*g 0 0 0

 0 0 0 1
 -m/M*g 0 0 0]

B = [0; -1/(L*M); 0; 1/M], % Column vector
C = eye(4), % Identity matrix
D = zeros(4, 1) % Column vector
P =[-2+j*.5, -2-j*.5, -5, -4];
[K, Af] = placepol(A, B, C, P)

Save as Lab4CS4bData.m. In Simulink, open the Lab4CS4a.mdl. Add the state feedbacks
and set the gains to K(1), K(2), K(3), and K(4) as shown in Figure 4.12.

K

straightforward; refer to “Computational Aids in Control Systems using MATLAB, Hadi
Saadat, McGraw-Hill 1993, Chapter 8, page 170.” A custom-made function named [K,

lacepol(A, B, C, P) is developed for
 matrices and P is a row vector containing the d
n returns the gain vect r K and the closed-loop

MATL
Function K = ck ,

AB Control System Toolbox contains two functions for pole-placem
a

p), wh ch uses a more reliable algor hm, or multi-input systems.

ect of state variable design is state feedback design. In this study us
nction [K, Af] = placepol(A, B, C, P) and design a state feedback
e closed-loop poles at

[1 0.5, 4, -5]P j= − ± −

Add the above two statements to the script file Lab4CS4aData4.m as shown below.

 4.14

x Ax Bu
y Cx Du
= +
= +

&
theta

Demux
In 1

 4.15

State-Space

Out 1
2

1

Demux
(4)K

(1)K

(2)K

(3)K

() ()u t Kx t= −+

−
−

−
−

Sum

State feedback
using pole-placement design1K

2K

3K

4K

x

Figure 4.12 Control of Inverted Pendulum via pole placement.

Run the script file Lab4CS4bData to evaluate the gain matrix K for use in the Simulink.
Rename the model as Lab4CS4b.mdl. Start the Simulation in SIMULINK and obtain a
plot of θ and x , comment on the stability of the system. To see an inverted pendulum
animation make sure you have obtained the m-file named ‘InvPenAnimation.m’. After
simulation type InvPenAnimation at the MATLAB prompt.

At the MATLAB prompt type the following commands to obtain the linearized transfer
function model, and roots of the compensated characteristic equation.

[num, den]=linmod(‘Lab4CS4b’)
r = roots(den)

Check for the roots of the compensated system. Are they the same as the specified
values? Is the system stable that is, will the pendulum return to the vertical equilibrium
position?

	EE-371 CONTROL SYSTEMS LABORATORY
	Modeling and Digital Simulation Case Studies
	Purpose

