
EE-479 Digital Control System
Project 3

Rotary Inverted Pendulum
Purpose

The purpose of this project is to design hybrid controllers for balancing the rotary
inverted pendulum in the vertical-upright position. The objectives of this project are:

• To obtain a nonlinear model of the rotary inverted pendulum.

• To obtain a linear model in the neighborhood of an equilibrium state.

• To verify the linear and nonlinear models by constructing the nonlinear and the
linear models in Simulink and simulating in tandem. Check to see if the linear
model is indeed a true model of this system over a specific operating range.

• To design a state feedback controller that manipulates the servomotor angle to
keep the pendulum in the upright position. The controller must have good
stability margins, and should accommodate model uncertainty. (Sensor noise,
friction of motor, etc.). A catch controller must be designed to activate the state
feedback controller when the pendulum is placed in a small neighborhood of the
inverted equilibrium.

• To design a swing up controller that raises the pendulum to the inverted position
in a controlled manner, where the state feedback controller can stabilize it (Self-
erecting pendulum).

• To build the compensated system in SIMULINK and simulate offline.

• To build the WinCon application, implement and test the system on the real-time
hardware.

Figure 3.1 Inverted pendulum coupled to SRV02 Servomotor in the high gear ratio

 1

Introduction

The control of an inverted pendulum is a well-known and a challenging problem that
serves as a popular benchmark in modern control system studies. The inverted pendulum
consists of a rigid link attached to a pivot arm. The arm must move in the horizontal
plane in such a way as to keep the pendulum in an upright position. This is similar to the
classic pendulum mounted on a cart which must move in such a way as to keep the
pendulum in an upright position.

An inverted pendulum is an inherently unstable system by nature. Force must be properly
applied to keep the pendulum in an upright position. This is similar to the problem of
balancing a broomstick on the palm of your hand. You must constantly adjust the
position of your hand to keep the object upright.

The problem of balancing an unstable system occurs in practice in the areas of missile
stabilization, control of a space rocket during takeoff and control of robots.

1. Mathematical Modeling

1.1 Servomotor Model

In the position control experiment (EE-371 Lab 5) the servomotor model was developed
with the following block diagram as shown in Figure 3.2.

1

a aR L s+
−

()o sθ()iV s

()mE s

()aI s ()mT s ()o sΩ

Output
angleGear

mKη gK
1

eq eqB J s+
()LT s 1

s

mK gK
()m sΩ

Figure 3.2 Servo plant block diagram

2 2

()
()

m g

a eqo

i eq m g

eq a eq

K K
R Js

V s B K K
s s

J R J

η

θ
η

=
⎛ ⎞

+ +⎜ ⎟⎜ ⎟
⎝ ⎠

 (3.1)

or
()
() ()

o

i m

s a
V s s s b

mθ
=

+
 (3.2)

 Where

2 2

, m g eq m g
m m

a eq eq a eq

K K B K K
a b

R J J R
η η

= = +
J

 (3.3)

 2

http://www.saadat.us/download/ee371lab_manual/5_Position_Control_I.pdf

Also from the block diagram the s-domain output torque is ()LT s

0() () ()m g
L i m g

a

K K
T s V s K K s

R
η

⎡ ⎤= −⎣ ⎦Ω

Therefore the expression for the output torque in time-domain is

1 2() () ()L iT t K v t K tω= − (3.4)

where

1

2 2

2

m g

a

m g

a

K K
K

R

K K
K

R

η

η

=

=

 (3.5)

In this project the servomotor is arranged for the high gear ratio as shown in Figure 3.3.
For this configuration the gear ratio is (14)(5)gK = .

Figure 3.3 high gear ratio configurations

The system parameters are as follows:
Armature resistance, 2.6 aR = Ω
Motor voltage constant, 0.00767 V-s/radmK =
Motor torque constant, 0.00767 N-m/AKτ =

Armature inertia, 7 23.87 10 Kg mmJ −= ×

Tachometer inertia, 7 20.7 10 Kg mtachJ −= ×
High gear ratio, (14)(5)gK =

Equivalent viscous friction referred to the secondary gear
Nm/(rad/s)

2 34 10eq g m LB K B B −= + ×

Motor efficiency due to rotational loss 0.87mrη
Gearbox efficiency, 0.85gbη

(0.87)(0.85) 0.7395mr gbη η η= = =

 3

 Gear inertia:
5 2

120 4.1835 10 Kg mJ −= ×
 6 2

72 5.4435 10 Kg mJ −= ×
7 2

24 1.0081 10 Kg mJ −= ×

Load inertia, -5 2
120 72 242() 5.2823 10 Kg m LJ J J J= + + = ×

2 7 2 5() (3.87 0.7)10 (14 5) 5.2823 10 0.0023 Kg meq m tach lJ J J Kg J − −= + + = + × + × = 2

1.2 The Inverted Pendulum Model

A schematic picture of the rotary inverted pendulum of length and mass m supported
by a pivot arm is shown in Figure 3.4. The pivot arm of radius rotates in a horizontal
plane by the servomotor. The arm must be moved in such a way that the pendulum is in
the upright position. One encoder is used to measure the angular position and velocity of
the servomotor and another encoder is used to measure the pendulum angle and velocity.

l
r

The angle of the pendulumα is defined to be zero when in upright position and positive
when the pendulum is moving clockwise. The angle of the armθ is positive when the
arm is moving in clockwise direction. The parameters of the pendulum are defined as
follows:

α

θ

l

m

r

Figure 3.4 Simplified Inverted Pendulum schematic

 Arm radius (cm) r 21.5r =
θ Servo gear angular displacement
ω Servo gear angular velocity
α Pendulum angular deflection
υ Pendulum angular velocity

 4

L Pendulum length (cm) 16.75L =
m Pendulum mass (Kg) 0.125m =
h Distance of Pendulum Center of mass from ground

cmJ Pendulum Inertia about its center of mass

xv Velocity of Pendulum Center of mass in the x-direction

xv Velocity of Pendulum Center of mass in the y-direction
g Gravitational acceleration () 29.8 m/sg =

From the above definition

 θ ω
α υ
=
=

 (3.6)

The governing differential equations of the system are as follows

 2 1 1() cos sin
2 2eq eq LJ mr mLr mLr B Tω α υ α υ ω+ − + + =2 (3.7)

 21 1 1cos sin 0
3 2 2

mL mLr mgLυ α ω− − α =

2

 (3.8)

or
 1cos sin ()eq ia b b B K v t Kω α υ α υ ω ω2− + + = − (3.9)
 cos sin 0c b dυ α ω α− − = (3.10)

where

2

2

1
2
1
3
1
2

eqa J mr

b mLr

c mL

d mgL

= +

=

=

=

 (3.11)

Solving for ω from (3.10), we have

 sin
cos cos

c d
b b

ω υ
α α

= − α (3.12)

Substituting for ω in (3.9) from (3.12) and solving for υ andω , results in the following
nonlinear equations

 2 2
1

1 [sin (cos) (cos sin) (cos) ()]
() iad pb b bK v t

f u
υ α α ω α α υ α= − − + (3.13)

 2
1

1 [cos sin () (sin) () ()]
() idb cp cb cK v t

f u
ω α α ω α υ= − − + (3.14)

 5

where

2

2 2() cos

p B Keq

f u ac b α

= +

= −
 (3.15)

The above equations describing the dynamics of the model are highly nonlinear. The
servomotor viscous friction has been included, but the friction between the pendulum and
the rotating arm has been neglected. Nonlinearity also arises due to the Coulomb friction
which gives rise to limit cycles. The Coulomb friction compensation can be considered
by amending the control law with a step function.

1.3 Linearized Model

In order to design a linear regulator state feedback, we need to linearize the model.
Equations (3-13) and (3-14) can be linearized by considering the equilibrium state of the
system. If we assume α is small (i.e., when the Inverted Pendulum is near its equilibrium
point), we can linearize these equations. For smallα , sinα α≈ and cos 1α ≈ . Also, for
smallα , 2υ is negligible, and we get the following linearized equations

 1 ()eq ia b B K v t K2ω υ ω− + = − ω (3.16)
 0c b dυ ω α− − = (3.17)
or

 1 ()i
bKad pb v t

e e e
υ α ω= − + (3.18)

 1 ()i
cKbd pc v t

e e e
ω α ω= − + (3.19)

where

2

2eq

e ac b
p B K
= −
= +

 (3.20)

The linearized model is used to design the stabilizing controller. We now obtain an state-
space model

x ()t = A x ()t + B ()u t (3.21)
()y t = C x ()t (3.22)

For the combined servomotor and the Inverted Pendulum module, we choose the state
variables as x ()t

x ()t = []Tθ α ω υ
By combining (3.6), (3.19) and (3.18) we obtain the following linear state space model of
the inverted pendulum.

 6

 1

1

00 0 1 0
00 0 0 1

()0 0

0 0

i
cKbd pc v t

e e e
ad pb bK
e e e

θθ
αα

ωω

υυ

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= +−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣⎣ ⎦ ⎦

 (3.23)

2. Control Strategy

The controller consists of three parts: a swing-up controller, a catch controller, and a
state feedback stabilizing controller.

Manual Mode – For this mode, the pendulum is raised manually by hand towards the
upright position (no swing up controller) until it is captured by the catch-controller which
turns on the state feedback stabilizing controller.

Self-erecting pendulum - Initially, the pendulum is in the downward position and the
swing-up controller is used to bring it to the top position. Once it is sufficiently close to
the top equilibrium position, it is caught and switched to the state feedback stabilization
controller.

2.1 Stabilizing Controller Design

(a) Pole-placement

State-space feedback is the most important aspect of modern control system. By proper
state feedback, unstable systems can be stabilized or damping of oscillatory systems can
be improved. One basic approach is known as the pole-placement design. Pole placement
design allows the placement of poles at specified locations, provided the system is
controllable. This results in a regulator with constant gain vector . However, the basic
pole placement method is strongly dependent on the availability of an accurate model of
the system. Other approach to the design of regulator systems is the optimal control
problem where a specified mathematical performance criterion is minimized. In optimal
regulator design random disturbances can be rejected and the closed-loop system can be
made insensitive to changes of plant dynamics.

K

In pole-placement design the control is achieved by feeding back the state variables
through a regulator with constant gains. Consider a linear continuous-time controllable
system, modeled in state-space form as given by (3.21) - (3.22). The block diagram of the
system with the following state feedback control is shown in Figure 3.5.

()u t = − Kx ()t (3.24)

where is a 1 matrix of constant feedback gain. The control system input is assumed
to be zero. The purpose of this system is to return all state variables to values of zero
when the states have been perturbed.

K n×

 7

Plant

nK− −

()u t

2K

1K

Plant
− ()nx t

1()x t2 ()x t

()y t

Figure 3.5 Control system design via pole placement.

Substituting (3.24) into (3.21), the closed-loop system state-variable representation
become

x () [t = −A BK] x ()t = fA x ()t (3.25)

The design objective is to find the gain matrix such that the characteristic equation for
the controlled system is identical to the desired characteristic equation. The derivation
when matrix

K

A is in phase variable control canonical form is straightforward. When the
system is not in phase variable form, first the system is transformed into the phase
variable control canonical form; refer to your textbook and lecture notes or to
“Computational Aids in Control Systems using MATLAB, Hadi Saadat, McGraw-Hill
1993, Chapter 8, page 170.” A custom-made function named [K, Af] = placepol(A, B,
C, P) is developed for the pole placement design. A, B, C are system matrices and P is a
row vector containing the desired closed-loop poles. This function returns the gain
vector and the new system matrix Af. Also, the MATLAB Control System Toolbox
contains two functions for pole-placement design. Function K = acker(A, B, P) is for
single input systems, and function K = place(A, B, p) suitable for multi-input systems.

K

The plant described by (3.21) with the system matrix having dimension is
completely state controllable if and only if the controllability matrix has a rank of .

n n×
S n

[Refer to Chapter 8 p. 175 in the above reference]. A function S = cntrable(A, B) is
developed which returns the controllability matrix and determines whether or not the
system is state controllable. Also, the function ctrb(A, B) in MATLAB Control system
toolbox can be used to determine the controllability matrix. In pole-placement design, it
was assumed that all state variables are available for feedback. However, in practice it is
impractical to install all the transducers, which would be necessary to measure all of the
states. If the state variables are not available an observer or estimator is designed.

S

(b) Optimal Regulator

Instead of the pole-placement design described above, the stabilization controller can be
designed using the Linear Quadratic Regulator (LQR). The object is to determine the
optimal controller such that a given performance index

 is minimized. The performance index is selected to give the best
performance. The choice of the elements of Q and

()u t = − K x ()t

(= +∫ T TJ x Qx u Ru)dt
R allows the relative weighting of

individual state variables and individual control inputs. For example, using an identity
matrix for Q weights all the states equally. As a starting point you may use a diagnol

 8

http://www.saadat.us/CACS_Ch8.pdf
http://www.saadat.us/CACS_Ch8.pdf

matrix with values and ([4 40 0.1 0.5])Q diag = 1R = .The MATLAB Control
System Toolbox function [k, S] = lqr2(A, B, Q, R) calculates the optimal feedback
matrix K such that it minimizes the cost function subject to the constraint defined by
the state equation. Also returned is S, the steady-state solution to the associated algebraic
Riccati equation. Refer to your textbook and lecture notes or to “

J

Computational Aids in
Control Systems using MATLAB, Hadi Saadat, McGraw-Hill 1993, Chapter 8, page 180

2.2 Closed-loop poles specifications ─ Pole-placement

The state equation obtained in (3.25) results in a fourth order characteristic equation. For
the compensated closed-loop system we choose the poles as a desired pair of dominant
second-order poles, and select the rest of the poles to have real parts corresponding to
sufficiently damped modes so that the system will mimic a second-order response with
reasonable control effort. Pick the low-frequency modes and the high-frequency modes as
follows:

• A pair of dominant second-order poles with a time constant of 1
3

τ = second and a

damping ratio of 0.8ζ = .
• Select two real poles with very small time constants 3 0.125τ = second and

4 0.025τ = second.

3. Pre Laboratory Assignment

3.1 Verification of the liner model

A Simulink diagram is drawn for the nonlinear differential equations (3.13) and (3.14),
with parameters defined in (3.11) and (3.15). This simulation diagram which is turned
into a subsystem is shown in Figure 3.6

 9

http://www.saadat.us/CACS_Ch8.pdf
http://www.saadat.us/CACS_Ch8.pdf

Figure 3.6 Simulink diagram for the Inverted Pendulum Nonlinear model.

The state variable simulation diagram for the linear model is shown in Figure 3.7

 10

Figure 3.7 Simulink diagram for the Inverted Pendulum linear model.

In the nonlinear model, open the Integrator 4 and set the initial angle (alpha) to about
0.00001Radian. Also open the state model dialog box and set the initial conditions to
[0 0.00001 0 0]. Copy the two Subsystems in a new Simulink page, place the necessary
scopes for the purpose of comparing the two models shown in Figure 3.8, and save as
“Model_Comparison.mdl.”.

Figure 3.8 Simulink simulation diagram for combined Nonlinear and linear models

Since both anglesα and θ increases rapidly even for a small perturbation, set the
Simulation Stop Time to about 1.6 seconds to see the comparison for a small range of α .
Simulate and examine the plots forα , andθ , and determine the range of α for which the
linear model is in close agreement with the nonlinear response. From this observation a
threshold angle thα is obtained for the state feedback controller.

 11

3.2 Open-loop Analysis

Define the servomotor and Inverted Pendulum parameters in a script m-file and evaluate
the system A and matrices from (3.23). Use damp(A) to obtain the roots, damping
ratios and natural frequencies of the uncompensated characteristic equation. Comment on
the open-loop system stability and obtain the open-loop step response. Consider a step
input of . To find the open-loop step response, following the

B

25 A and matrices,
define

B
(4)=C eye , and , and add (4,1)=D zeros

 [numo, deno] = ss2tf(A, B, C, D, 1)
 Gp = tf(numo(1, :), deno)
 damp(A)
 ltiview(‘step’, 25*Gp)

Run the program and show that the system is a non minimum phase system.

Use function S = cntrable(A, B) or S = ctrb(A, B) to determine the system
controllability.

3.3 Regulator Design

Based on the design specifications given in section 2.2 locate the desired closed-loop
poles and form the vector P containing the four poles. Use function [K, Af] =
placepol(A, B, C, P) to obtain the gain vector K and the new system matrix Af. Add the
following statements to obtain the compensated transfer function and the step response to
a step input 25

 [K, Af] = placepol(A, B, C, P)
 [numc, denc] = ss2tf(Af, B, C, D, 1)
 Tc = tf(numc(1, :), denc)
 ltiview(‘step’, 25*Tc)
 damp(Af)

Use damp function to obtain the compensated system roots and confirm the pole-
placement design. Comment on the system response.

Alternatively apply LQR design with ([40 40 0.1 0.5])Q diag = and 1R = , and
determine the state-feedback gain matrix K .

3.4 Digital Simulation

Construct a SIMULINK simulation diagram named “InvPen_sim.mdl” for the
compensated system with state feedback as shown in Figure 3.9. In the Simulink block
diagram you can replace , , , , A B C D (1)K , and the gain matrix with the computed
values. Alternatively, you can place all equations in a script m-file to compute these
parameters, which are sent to the MATLAB Workspace, then simulate the Simulink

K

 12

diagram. From the Simulink/Simulation Parameters select the Solver page and for Solver
Option Type select Fixed-step and ode4 (Runge-Kutta) and set the fixed step size to
0.001.

Figure 3.9 Simulink simulation diagram for the Inverted Pendulum

Obtain the response to a square input of amplitude 25 degrees and frequency 0.1 Hz.

3.5 Swing-up Controller

As you have found out the linearized model is accurate when the pendulum angle α is
within a small range, (verify this from the simulation results in 3.1). Therefore, the
state feedback stabilization controller is accurate when pendulum is within this region. In
the manual mode, the pendulum is brought up to the vertical position by hand.
Alternatively a Swing-up controller can be designed to swing the pendulum to the upright
position from the stable ‘rest’ position. This controller is responsible for the swinging up
the pendulum to a position in which the stabilization mode can takeover. First the
servomotor is placed under position control then an algorithm is prescribed for the
deriving force.

30±

In this design the pendulum motion is ignored, but an approximate moment of inertia of

 to account for the rotation of arm and the pendulum mass is considered.
That is, the servomotor equivalent inertia

20.005 Kg m

eqJ is replaced by 0.005eqJ + . Based on this
value, compute and from (3.3), and obtain the servomotor transfer function given
in (3.2). As in position control (EE371, Lab 5) we use a rate feedback and a position
feedback given by

ma mb

() [() ()] ()i P i o D oV s K s s K sθ θ= − − Ω (3.26)

This feedback loop is shown in Figure 3.10. The purpose of this system is to have the
output angle, ()o tθ follow the desired position ()i tθ . Design the inner loop for position
control to meet the following time-domain specifications:

• Step response damping ratio 0.8ζ =
• Step response peak time 0.115pt = second

 13

PK

−

()i sθ ()o sΩm

m

a
s b+

1
s

DK

()o sθ

−

()iV s

Figure 3.10 Position Control using position and rate feedback.

Applying the Mason’s gain formula, the overall transfer function becomes

()2

()
()

o P m

i D m m

s K a
s s K a b s K aP m

θ
θ

=
+ + +

 (3.27)

The second-order response peak time , is given by pt

21
p

n

t π
ω ζ

=
−

 (3.28)

The servo motor transfer function has the same form as the standard second-order
transfer function

2

2

()
() 2

o n

i n

s
s s s

θ ω
2
nθ ζω ω

=
+ +

From (3.27), we have

2
n

P
m

K
a
ω

= , 2 n m
D

m

bK
a

ζω −
= (3.29)

From the given specifications compute nω , and use (3.29) to determine PK , and DK .

Many schemes can be devised to prescribe a driving force for a suitable trajectory in a
controlled manner that energy is gradually added to the system to bring the pendulum to
the inverted position. You may be asked to design one or more of the following schemes:

(a) Simple Rectangular Reference Input

Construct a subsystem Simulink diagram for the Swing-up Controller with position and
rate feedback. In order to safeguard against the excessive rotation of the servomotor
angle θ during swing-up, or when subjected to extreme tap disturbance in the
stabilization mode, a rational operator is added to stop the simulation when θ exceeds

2 / 5π± , (i.e., degrees) as shown in Figure 3.11. 72±

 14

Figure 3.11 Simulink diagram for the Swing-up Controller

A square-wave input of 1 Hz with a gain of was found to be sufficient to bring-up the
pendulum to the upright position. You can adjust the magnitude or the frequency to
obtain a more satisfactory swing-up. In the implementation part each time you change the
frequency you need to build and download the model.

20

Connect the Swing-up Controller Subsystem (a) to the IP Nonlinear model as shown in
Figure 3.12. In the nonlinear model, open the Integrator 4 and set the initial angle (alpha)
to π− Radians (-pi). For a square wav input of 1Hz, and amplitude 20 obtain the response
for oθ , andα .

Figure 3.12 Simulink simulation diagram for Swing-up controller design (a).

 15

The pendulum angle α should swing within a bound of 0 and with increasing
amplitude. Due to the nonlinearity and the assumption made in designing the Swing-up
controller, in the implementation diagram, the Gain

360−

DK may have to be further tuned so
that the pendulum is raised to the upright position within 5α ∗= ± in a controlled manner.

(b) Swing-up with positive feedback

The desired position ()i tθ is determined by the following control law

 () () ()i s P s D sθ α υ= + (3.30)

This positive feedback based on the pendulum angle and its velocity creates a trajectory
with growing amplitude. The gains and are adjusted to bring up the pendulum
smoothly. Experimentally obtained suggested values are

P D
0.02P = , and 0.015D =

Figure 3.13 Simulink simulation diagram for Swing-up controller design (b).

You may need to adjust these values to obtain a smoothly growing response.

Connect the Swing-up Controller Subsystem (b) to the IP Nonlinear model similar to
Figure 3.12. In the nonlinear model, open the Integrator 4 and set the initial angle (alpha)
to π− Radians (-pi). Obtain the response for oθ , andα .

(c) Swing-up with positive feedback and adaptive rate gain

A better approach would be to design an adaptive rate gain that changes with the states
of the pendulum. One suitable strategy would be to detect the pendulum maximum and

D

 16

minimum swings maxα , minα and adjust D exponentially to bring up the pendulum more
smoothly. The MinMax block from the Math Library, together with a Unit Delay block
can be used to obtain the maximum and minimum of each swing as shown in Figure 3.14.
The Unit Delay block delays and holds its input signal by one sampling interval. Open
the unit Delay dialog box and set the initial condition to “–pi “, and the sample time the
same as the simulation sampling time (i.e., 0.001).

Figure 3.14 Simulink instructional blocks to hold the min and max values of each swing

The Function blocks FCn1 and Fcn2 with a Max block and a Gain block Y is used to
multiply the feedback gain by the D min(2aYe)α π+ or as shown in Figure 3.15. max(aYe α−)

Figure 3.15 Simulink simulation diagram for Swing-up controller design (c).

The values for , , a and Y are obtained experimentally, suggested values
are , and , and

P D
0.015P = 0.015D = 0.8a = 0.1Y = . You need to experiment with these

values and perform a fine tuning to bring up the pendulum to the upright position with a
small angular velocity.

 17

Connect the Swing-up Controller Subsystem (c) to the IP Nonlinear model similar to
Figure 3.12. In the nonlinear model, open the Integrator 4 and set the initial angle (alpha)
to π− Radians (-pi). Obtain the response for oθ , andα .

Swing-up Controller Design

The servomotor equivalent inertia is replaced by eqJ 0.005eqJ + to account for the
pendulum inertia. Evaluating , and from (3.3). From (3.27) – (3.29) evaluate the
gains for

ma mb

PK and DK .

Construct the simulation diagram in Figure 3.12 and obtain the swing-up simulation
results for θ and α for each of three proposed swing-up controllers.

4. Laboratory Procedure

When you have finished testing your model in SIMULINK, it has to be prepared for
implementation on the real-time hardware. This means the plant model has to be replaced
by the I/O components that form the interfaces to the real plant.

4.1 Creating the Implementation model

Creating the Subsystem Block for the Interface to SRV02 and IP module

Two encoders are used to measure the angular position of the servomotor, θ and the
pendulum positionα .

If we turn the pendulum stick several times, the encoder will measure multiple
revolutions. In order to make measured signal α to roll over after a full turn (modulus
of 2π), we can use the Math Function mod from the Math Operations library. The

command mod(, 2)α π results in ()(2)nα π− , where is the remainder (integer) of n
2
α
π

For Example the following Simulink instruction with iα increasing from 0 to 8π
produces the output oα that is always between 0 to 2π as shown in Figure 3.16.

Ramp
mod

Scope
2*pi

Figure 3.16 An Example of use of Modulus function

We must use two observers to reconstruct the state variablesω , and υ which are not
directly measured. These are the derivatives ofθ , andα . Remembering that we cannot

 18

implement a pure derivative, we use the low-pass band-limited observer 50
50
s

s +
.This filter

is tuned to reduce the noise introduced in the numerical derivative.

Open a Simulink page and get the part Encoder Input. Double-click on the Encoder input
block to open its dialog box and set the Channel Use to 0. Since the encoder has 4096
signal periods per revolution, get a gain block and set its value to 2* / 4096pi− . A
negative sign is used for the encoder gain, because the negative feedback gain is already
implemented in the encoder wiring (i.e. positive voltage negative counts). Get a
Transfer function block for the low-pass band-limited filter. Get another Encoder Input
for the pendulum arm encoder with the same gain block as before to convert the encoder
count to radian. Add a Math Function from Math Operations library open the block and
set the function to mod. Apply a Constant block with a value of

⇒

2π as its second input.
Since at start the pendulum is hanging down, use a summing point to add the initial angle
of π− . Add another low-pass band-limited differentiator to obtain the derivative of α as
shown in Figure 3.17.

Figure 3.17 Building the Interface

To create a subsystem, enclose the blocks within a bounding box as shown in Figure 3.17
(Do not place any outport blocks). Choose Create Subsystem from the Edit menu.
Simulink replaces the selected blocks with a subsystem block. Double-click to open the
subsystem block. Notice that the Simulink automatically adds Outport blocks. If you have
added the dashed lines as shown in Figure 3.17, outports would also be added at these
locations, and then you can erase the extra dashed lines. If you did not have the dashed
lines in Figure 3.17, the subsystem would create only two Outport terminals and you need
to open the subsystem and add the Output ports from the Sink Menu manually. Label the
Outports appropriately as shown in Figure 3.18. Rename and title subsystem to Interface
to Srvo2 & IP, and save it as IP_Interface.mdl. You know have the following subsystem
as shown in Figure 3.18.

 19

Figure 3.18 Subsystem block for the interface to the SRV02

If you double-click on the above subsystem it would display the underlying system as
shown in Figure 3.19.

Figure 3.19 Interface to SRV02 and Inverted Pendulum

Catch Controller

The control instruction for the Catch Controller Subsystem is shown in Figure 3.20.
Its purpose is to track the pendulum angleα , and facilitate switching between the swing-
up and stabilization modes. This controller is to be enabled when α is in the
neighborhood of zero, within and for as long as5± 25α < .

 20

Figure 3.20 Catch Controller for control signal activation

To make this controller, get the Enabled Subsystem (from Port & Subsystem library) and
add a constant input of 1 at it’s inport. Get a R2D block and the Absolute block and

connect to the Enable Subsystem block via a Relational Operator
<=

and constant
block of value 5. This will enable the Subsystem when 5 α 5− ≤ ≤ . Use a Relational

Operator block
<

 to test the absolute value of α in degrees against the threshold
angle of 25 . Finally use a Logical Operator AND to enable the Catch Controller when
the given constraints are met. Make the Subsystem and label it “Catch Controller for
Control Signal Activation” When expanded it should be the same as shown in Figure
3.20.

Switch for activating the stabilization controller

This switch is triggered by the output of the Catch controller. Initially when the
pendulum is hanging down, the Switch terminal 2 (See Figure 3.21) is at zero state and
the control signal is passed through terminal 3 (lower terminal). If the pendulum is
brought to the upright position (either manually or by means of the swing-up controller)
as α reaches in the neighborhood of 5± , the Catch controller is enabled. The Switch
control input state becomes 1, the signal is passed through terminal 1 (top terminal) and
stabilization controller takes over.

Manual Switch

The manual switch is provided to allow the experiment to be performed with manual
swing-up or self-erecting mode, using an appropriate Swing-up controller.

Implementation model

 21

Start constructing the implementation diagram. Copy the IP_Interface.mdl (constructed in
part 4.1, Figure 3.18) to the clipboard and paste it on a new Simulink page as shown in
Figure 3.21. Get the Analog Output block from the Quanser MultiQ3 library and set the
Channel Use to 0. Connect the output terminals of the Interface to Srvo2 & IP via a Mux
block to a Matrix Gain block. Connect the output of the Gain Matrix block via a Switch
(from Signal Routing library) to the Quanser Analog output.

Copy and paste the Catch Controller subsystem and connect its input to the pendulum
angle signal and its output to the Switch control input (terminal 2). Next place one of the
Swing-up Controller subsystems constructed in part 3.5 (Figure 3.11, Figure 3.13, or
Figure 3.15), and connect it to the lower terminal of the Main Switch via a manual
Switch. Connect the Swing-up controller input terminals to the appropriate state
variables. When the Manual switch is at the top terminal, the pendulum is in the manual
mode and when at the lower terminal, the pendulum is in the self-erecting mode. Place as
many Scopes as you like to monitor the phase anglesθ andα . Your completed model
should be the same as shown in Figure 3.21.

Figure 3.21 Implementation Diagram for the Rotary Inverted Pendulum

 22

The Main switch Threshold is set to 1. The middle terminal is the control input. If the
control input is 1 the signal is passed through input 1 (top terminal), and if the control
input is 0, signal is passed through input 3 (bottom terminal).

The switch control input is triggered by the signal (0 or 1) coming from the Catch
Controller Subsystem.

4.2 Wiring diagram

Attach the Rotpen module to the SRV02 as shown in Figure 3.1. Tighten the two thumb
screws very well. Clamp the SRV02 to the table corner so that it does not tip when the
pendulum is self erecting

Using the set of leads, universal power module (UPM), SRV-02 DC-motor, and the
connecting board of the MultiQ3 data acquisition board, complete the wiring diagram
shown in Figure 3.22 as follows:

From To Cable

Encoder on SRV02 MultiQ/Encoder 0 5 pin Din to 5 pin Din

Encoder on the pendulum arm MultiQ/Encoder 1 5 pin Din to 5 pin Din

Motor on SRV02 UPM/To Load 6Pin to 4 Pin Din, Gain 1 Cable

D/A #0 on MultiQ UPM – From D/A RCA to 5 Pin Din

A/D # 0, 1, 2, 3, on MultiQ UPM- TO A/D 5 Din to 4xRCA

Figure 3.22 Wiring diagram for the IP Project.

4.3 Compiling the model

In order to run the implementation model in real-time, you must first build the code for it.

 23

Turn on the UPM. Start WinCon, Click on the MATLAB icon in WinCon server. This
launches MATLAB. In the Command menu set the Current Directory to the path where
your model InvPen_Imp.mdl is. Before building the model, you must set the simulation
parameters. Pull down the Simulation dialog box and select Parameters. Set the Start time
to 0, the Stop time to 10, for Solver Option use Fixed-step and ode4 (Runge-Kutta)
method, set the Fixed-step size, i.e., the sampling rate to 0.001. In the Simulation drop
down menu set the model to External. Set the Matrix gains K to the values found in part
(3.3), or run the m-file that returns the values of the matrix K .

Start the WinCon Server on your laptop and then use Client Connect, in the dialog box
type the proper Client workstation IP address. Generate the real-time code corresponding
to your diagram by selecting the “Build” option of the WinCon menu from the Simulink
window. The MATLAB window displays the progress of the code generation task. Wait
until the compilation is complete. The following message then appears: “### Successful
completion of Real-Time Workshop build procedure for model: InvPen_Imp”.

4.4 Running the code

Following the code generation, WinCon Server and WinCon Client are automatically
started. The generated code is automatically downloaded to the Client and the system is
ready to run. Set the Manual switch to its top position (No control Manual Swing-up). To
start the controller to run in real-time, click on the Start icon from the WinCon Server
window shown in Figure 3.23. It will turn red and display STOP. For the manual mode
hold the tip of the pendulum and move the pendulum slowly upward towards 0α = until
you feel the system is catching and stabilizing the pendulum in upright position.

Clicking on the Stop icon will stop the real-time code and return to the green button.

Figure 3.23WinCon Server

If the pendulum is going out of control immediately stop the controller. Also, if you hear
a whining or buzzing in the motor you are feeding high frequency noise to the motor or
motor is subjected to excessive voltage, immediately stop the motor. Ask the instructor to
recheck the implementation diagram and the compensator gains before proceeding again.

4.5 Plotting Data
You can now plot in real-time any variables of your diagram by clicking on the
“Plot/New/Scope” button in the WinCon Server window and selecting the variable you
wish to visualize. Select “alpha_o” and click OK. This opens one real-time plot. From
Scope pull-down menu, select Buffer and set the Buffer Size to 10. From the File menu
you can Save and Print the graph. If you choose Save As M-File … you save the plot as

 24

M-file. Now at the MATLAB prompt if you type the file name you can obtain the
MATLAB Figure plot. You can type grid to place a grid on the graph or edit the Figure
as you wish. Similarly obtain a plot for theta_o.

The inverted pendulum system allows the user to add disturbances, by tapping on the tip
of the pendulum. The disturbance should maintain stability unless the disturbance causes
the angle α to exceed 25 degrees in either direction. Tap the tip of pendulum gently to
see how it reacts, and if stability is maintained for a small disturbance.

In WinCon Server, use File Save, this saves the compiled controller including all plots as
a .wpc (WinCon project) file. In case you want to run the experiment again, from
WinCon Server use File/Open to reload this .wcp file, and run the project in real time
independent of MATLAB/Simulink.

To prevent excessive wear to the motor and gearbox run the experiment for a short time.

Self-Erecting Pendulum

Make sure the controller is not running WinCon Server window should display green
START. Double-click on the manual switch to connect to the lower position (Self-
erecting Swing-up Controller). Click on the Start icon from the WinCon Server window
it will turn red and display STOP. The pendulum will start swinging, it should come up to
the upright position in the first few swings where the Catch Control will activate the State
feedback Controller and stabilizes the pendulum. If the pendulum is not catching up, stop
and try again. Always start the system with the servomotor arm in the middle (0θ =),
and the pendulum in at standstill in down position. If the pendulum does not quite come
to the upright position you may have to do fine tuning for DK . Obtain a plot of θ , and
α , which should be the same as before when the pendulum is under the state feedback
stabilization controller. Tap the tip of pendulum gently to see how it reacts, and if
stability is maintained for a small disturbance. If the tap is very hard that pushesθ
beyond the catch controller is disabled, the Switch state becomes zero, and the
pendulum falls and the pendulum will start oscillating again until the pendulum comes
up and switch state once again becomes 1. In some situation if the tap is so hard that
pushes

25±

θ beyond 2 / 5π± (i.e.,) the Swing-up controller stops the run to prevent the
full rotation of the servomotor.

72±

Alternative Swing-up controller
Further independent study or projects for design of the Swing-up controller are as
follows.

• Controller design using an S-curve trajectory.
• Designing a Pulse-Width Modulation (PWM), with a variable duty cycle signal.
• Creating a trajectory based on pendulum energy control with minimum time

strategy.

 25

• Design of adaptive fuzzy logic controllers.
• Design of neural fuzzy logic controllers with adaptive membership functions.
• Study of the robustness of these techniques.

5. Project Report

Discuss the assumptions and approximations made in modeling the servomotor and the
inverted pendulum.

Your report must include the detailed servo plant and the Inverted pendulum block
diagrams. Discuss and compare the nonlinear model with the linearized model, and
determine the range of α for which the linear model is in close agreement with the
nonlinear model. Summarize the state feedback gains and comment on the simulation
results due to a step input in part 3.4. Discuss how the implemented stabilization
controller performed when the pendulum was brought to the upright position manually.
Comment on the system behavior when the pendulum was subjected to external
disturbances. State the type of Swing-up controller used and state if it produced a
satisfactory start up. If you used more that one Swing-up controller compare their
performance and actual positive feedback gains used in the Swing-up controller (b) and
(c). Discuss any modification you made in the Swing-up controller that significantly
improves the performance of the Swing-up controller. That is, to bring the pendulum to
the upright position with minimum number of swings and a very small velocity in the
upright position

.

 26

	The linearized model is used to design the stabilizing contr
	(3.21)
	(3.22)
	For the combined servomotor and the Inverted Pendulum module
	By combining (3.6), (3.19) and (3.18) we obtain the followin
	2.1 Stabilizing Controller Design
	(b) Optimal Regulator
	Creating the Subsystem Block for the Interface to SRV02 and
	Figure 3.22 Wiring diagram for the IP Project.
	

