
EE-479 Digital Control System
Project 1

Flexible Link

Purpose

This control project involves positioning the flexible link to a set point using a state
feedback controller to damp out the vibration at the tip of the link as quickly as possible
with minimal vibrations. The objectives of this project are:

• To obtain a linear state-space model for the Flexible Link module

• To design a state feedback controller that damps out the vibrations at the tip of

the beam.

• Build the compensated servo plant in SIMULINK and simulate offline to obtain
the response to a given command input.

• Build the WinCon application, implement and test the system on the real-time
hardware

Figure 1.1 Flexible Link module coupled to SRV02 Servomotor in high gear ratio

Introduction

This project addresses the problem of controlling a flexible link with a state feedback
controller. Numerous applications are mechanical actuators, control of robot arms, space
shuttle arms, and flexible space structures.

 1.1

The flexible link module includes a SRV02 servomotor in the high gear ratio
configurations and a flexible link. The flexible link consists of a single lightweight arm
that flexes and bends during rotation. Tip deflection ()tα is measured with a strain gauge
at the motor end of the link. The strain gage output is calibrated to output 1 Volt per inch
of deflection at the tip. A DC motor located at the base actuates the arm. An optical
encoder attached to the shaft of the DC motor is used to measure the angular position of
the shaft ()tθ .

Because of the flexibility of the link, rotating the base of the link causes the entire link to
oscillate. The objective of this challenge is to design a feedback controller to position the
tip of the link to a desired set point as quickly as possible with minimal vibration by a
control input at the base away from the tip of the link.
.
1. Mathematical Modeling

1.1 Servomotor Model

In the position control experiment (EE-371 Lab 5) the servomotor model was developed
with the following block diagram as shown in Figure 1.2.

1

a aR L s+
−

()o sθ()iV s

()mE s

()aI s ()mT s ()o sΩ

Output
angleGear

mKη gK
1

eq eqB J s+
()LT s 1

s

mK gK
()m sΩ

Figure 1.2 Servo plant block diagram

2 2

()
()

m g

a eqo

i eq m g

eq a eq

K K
R Js

V s B K K
s s

J R J

η

θ
η

=

+ +

 (1.1)

or
()
() ()

o

i m

s a
V s s s b

mθ
=

+
 (1.2)

 Where
2 2

, m g eq m g
m m

a eq eq a eq

K K B K K
a b

R J J
η η

= = +
R J

 (1.3)

Also from the block diagram the s-domain output torque T is ()L s

 1.2

http://www.saadat.us/download/ee371lab_manual/5_Position_Control_I.pdf

0() () ()m g
L i m g

a

K K
T s V s K K s

R
η

 = − Ω

Therefore the expression for the output torque in time-domain is

2 2

() () ()m g m g
L i

a a

K K K K
T t v t t

R R
η

θ= − (1.4)

In this project the servomotor is arranged for the high gear ratio as shown in Figure 1.3.
For this configuration the gear ratio is (14)(5)gK = .

Figure 1.3 High-gear ratio configurations

The system parameters are as follows:
Armature resistance, 2.6 aR = Ω
Motor voltage constant, 0.00767 V-s/radmK =
Motor torque constant, 0.00767 N-m/AKτ =

Armature inertia, 7 23.87 10 Kg mmJ −= ×

Tachometer inertia, 7 20.7 10 Kg mtachJ −= ×
High gear ratio, (14)(5)gK =

Equivalent viscous friction referred to the secondary gear
Nm/(rad/s)

2 34 10eq g m LB K B B −= + ×

Motor efficiency due to rotational loss 0.87mrη
Gearbox efficiency, 0.85gbη

(0.87)(0.85) 0.7395mr gbη η η= = =

 Gear inertia:

5 2
120 4.1835 10 Kg mJ −= ×

 6 2
72 5.4435 10 Kg mJ −= ×

7 2
24 1.0081 10 Kg mJ −= ×

Load inertia, -5 2

120 72 242() 5.2823 10 Kg m LJ J J J= + + = ×

 1.3

2 2 7 5() (14 5) (3.87 0.70) 10 5.2823 10 0.0023 Kg meq g m tach LJ K J J J − −= + + = × + × + × = 2

1.2 Flexible Link Model

The parameters of the flexible module are defined as follows:

θ Servo gear angular displacement
ω Servo gear angular velocity
α Link angular deflection
υ Link angular velocity
γ Total deflection γ θ α= +
L Flexible link length () 15 inches 0.381 mL = =
D End point arc length deflection (D Lα=)
m Mass of flexible link (65 gmm =)

armJ Link’s moment of inertia (2 21 1 (0.065)(0.381) 0.0031452
3 3armJ mL= = =)

FLω Link’s damped natural frequency (Lf measured to be 3Hz, 6FLω π=)

stiffK Link’s stiffness () 2 2(6) (0.0031452)=1.1175stiff FL FLK Jω π= =

GageK Strain gage calibration factor (1 Volt/inch)

Consider the Flexible link schematic shown in Figure 1.4.

, θ ω

θ
LT

L

, α υ
γ θ α= +

Figure 1.4 A schematic picture of the Flexible Link.

From the above definition

 θ ω
α υ
=
=

 (1.5)

If is the link’s moment of inertia, the torque due to the link acceleration is armJ

2

2 () (
armJ arm arm arm

dT J J J
dt
γ)θ α ω= = + = υ+ (1.6)

 1.4

The link torque due to torsional spring stiffness stiffK is assumed to be proportional to the
link’s deflection α , i.e.,

stiffK stiffT K α= (1.7)

 0
arm stiffJ KT T+ =

or
 (1.8) () 0arm stiffJ Kω υ α+ + =

The servomotor output torque in addition to overcoming the inertia torque due to and
frictional torque, it is assumed to overcome the torque due to link’s acceleration, i.e.,

eqJ

 (1.9) ()eq eq arm LJ B Jω ω ω υ+ + + = T

)Substituting for (armJ ω υ+ from (1.8) into (1.9), we have

 1stiff eq
L

eq eq eq

K B
T

J J J
ω α= + − ω (1.10)

Substituting for from (1.4), yields LT

2 2

stiff m g eq a m g
i

eq eq a eq a

K K K B R K K
v

J J R J
η η

ω α ω
+

= − +
R

 (1.11)

Substituting for ω from (1.11) into (1.9), we obtain

2 2()stiff eq arm m g eq a m g
i

eq arm eq a eq a

K J J K K B R K K
v

J J J R J R
η η

υ α ω
+ +

= + − (1.12)

We now obtain an state-space model
x ()t = A x ()t + B ()u t (1.13)
()y t = C x ()t (1.14)

For the combined servomotor and the flexible link module, we choose the state variables

as x ()t

x ()t = []Tθ α ω υ

Writing (1.5), (1.11) and (1.12) in matrix form, we obtain the following state-space
model

 1.5

2 2

2 2

0 0 1 0 0
0 0 0 1 0

0 0

()
0 0

stiff m g eq a m g

eq eq a eq a

m gstiff eq arm m g eq a

eq aeq arm eq a

K K K B R K
vJ J R J

K KK J J K K B R
J RJ J J R

θθ
αα

η ηωω

ηη υυ

K
R

 +

− = +

 + + −−

i (1.15)

2. Regulator Design

(a) Pole-placement

Stat-space feedback is the most important aspect of modern control system. By proper
state feedback, unstable systems can be stabilized or damping of oscillatory systems can
be improved. One basic approach is known as the pole-placement design. Pole placement
design allows the placement of poles at specified locations, provided the system is
controllable. This results in a regulator with constant gain vector . However, the basic
pole placement method is strongly dependent on the availability of an accurate model of
the system. Other approach to the design of regulator systems is the optimal control
problem where a specified mathematical performance criterion is minimized. In optimal
regulator design random disturbances can be rejected and the closed-loop system can be
made insensitive to changes of plant dynamics.

K

In pole-placement design the control is achieved by feeding back the state variables
through a regulator with constant gains. Consider a linear continuous-time controllable
system, modeled in state-space form as given by (1.13)-(1-14). The block diagram of the
system with the following state feedback control is shown in Figure 1.5.

()u t = − K ()x t (1.16)
where is a 1 matrix of constant feedback gain. The control system input is assumed
to be zero. The purpose of this system is to return all state variables to values of zero
when the states have been perturbed.

K n×

Plant

nK− −

()u t

2K

1K

Plant
− ()nx t

1()x t2 ()x t

()y t

Figure 1.5 Control system design via pole placement.

 1.6

Substituting (1.16) into (1.13), the closed-loop system state-variable representation
become

x () [t = −A BK] x ()t = fA x ()t (1.17)

The design objective is to find the gain matrix such that the characteristic equation for
the controlled system is identical to the desired characteristic equation. The derivation
when matrix

K

A is in phase variable control canonical form is straightforward. When the
system is not in phase variable form, first the system is transformed into the phase
variable control canonical form; refer your textbook and lecture notes or to
“Computational Aids in Control Systems using MATLAB, Hadi Saadat, McGraw-Hill
1993, Chapter 8, page 170.” A custom-made function named [K, Af] = placepol(A, B,
C, P) is developed for the pole placement design. A, B, C are system matrices and P is a
row vector containing the desired closed-loop poles. This function returns the gain vector
K and the new system matrix Af. Also, the MATLAB Control System Toolbox contains
two functions for pole-placement design. Function K = acker(A, B, P) is for single input
systems, and function K = place(A, B, p) suitable for multi-input systems. The plant
described by (1.13) with the system matrix having dimension n n× is completely state
controllable if and only if the controllability matrix has a rank of n . S
[Refer to Chapter 8 p. 175 in the above reference]. A function S = cntrable(A, B) is
developed which returns the controllability matrix and determines whether or not the
system is state controllable. Also, the function ctrb(A, B) in MATLAB Control system
toolbox can be used to determine the controllability matrix. In pole-placement design, it
was assumed that all state variables are available for feedback. However, in practice it is
impractical to install all the transducers, which would be necessary to measure all of the
states. If the state variables are not available an observer or estimator is designed.

S

(b) Optimal Regulator

Instead of the pole-placement design described above, the controller can be designed
using the Linear Quadratic Regulator (LQR). The object is to determine the optimal
controller such that a given performance index ()u t = − K x ()t ()= +∫ T TJ x Qx u Ru

Q

dt
is minimized. The performance index is selected to give the best performance. The choice
of the elements of Q and allows the relative weighting of individual state variables
and individual control inputs. For example, using an identity matrix for weights all the
states equally. As a starting point you may use a diagnol matrix with values

 and

R

2 ([260 3600 1])Q diag= 1R = .The MATLAB Control System Toolbox
function [k, S] = lqr2(A, B, Q, R) calculates the optimal feedback matrix K such that it
minimizes the cost function subject to the constraint defined by the state equation. Also
returned is S, the steady-state solution to the associated algebraic Riccati equation. Refer
to your textbook and lecture notes or to “

J

Computational Aids in Control Systems using
MATLAB, Hadi Saadat, McGraw-Hill 1993, Chapter 8, page 180

 1.7

http://www.saadat.us/CACS_Ch8.pdf
http://www.saadat.us/CACS_Ch8.pdf
http://www.saadat.us/CACS_Ch8.pdf
http://www.saadat.us/CACS_Ch8.pdf

2.2 Closed-loop poles specifications − Pole-placement

The state equation obtained in (1.15) results in a fourth order characteristic equation. For
the compensated closed-loop system we choose the poles as a desired pair of dominant
second-order poles, and select the rest of the poles to have real parts corresponding to
sufficiently damped modes so that the system will mimic a second-order response with
reasonable control effort. Pick the low-frequency modes and the high-frequency modes as
follows:

• A pair of dominant second-order poles with a time constant of 0.1τ = second and
a damping ratio of 0.8ζ = .

• Select two real poles with very small time constants 3 0.05τ = second and

4 0.008τ = second.

3. Pre Laboratory Assignment

3.1 Open-loop Analysis

Define the servomotor and flexible link parameters in a script m-file and determine the
system A andBmatrices. Use damp(A) to obtain the roots, damping ratios and natural
frequencies of the uncompensated characteristic equation. Comment on the open-loop
system stability and obtain the open-loop step response. Consider a step input of . To
find the step response for

30
θ as output, define C = [1 0 0 0], D = 0, and use

[numo, deno] = ss2tf(A, B, C, D, 1)
Gp = tf(numo, deno)
ltiview(‘step’, 30*Gp)

Use function S = cntrable(A, B) or S = ctrb(A, B) to determine the system
controllability.

3.2 Regulator Design

Based on the design specifications given in section 2.2 locate the desired closed-loop
poles and form the vector P containing the four poles. Use function [K, Af] =
placepol(A, B, C, P) to obtain the gain vector K and the new system matrix Af. Add the
following statements to obtain the compensated transfer function and the step response to
a 3 step input 0

[K, Af] = placepol(A, B, C, P)
[numc, denc] = ss2tf(Af, B, C, D, 1)
Tc = tf(numc, denc)
ltiview(‘step’, 30*Tc)

 1.8

Use damp function to obtain the compensated system roots and confirm the pole-
placement design. Comment on the system response.

Alternatively apply LQR design with ([260 3600 2 1])Q diag = and 1R = and find
the state feedback gain matrix . K

3.3 Digital Simulation

The Simulink simulation diagram for the compensated system with state feedback named
“FlexLink_sim.mdl” is constructed as shown in Figure 1.6. In the Simulink block
diagram you can replace A, B, C, D, Ks(1), Ks(2), Ks(3), and Ks(4) with the computed
values. Alternatively, you can place all equations in a script m-file to compute the
parameters, which are sent to the MATLAB Workspace, then simulate the Simulink
diagram. From the Simulink/Simulation Parameters select the Solver page and for Solver
Option Type select Fixed-step and ode4 (Runge-Kutta) and set the fixed step size to
0.001.

Figure 1.6 Simulink simulation diagram for the Flexible Link

Obtain the response to a square input of amplitude 30 degrees and frequency 0.25 Hz.

4. Laboratory Procedure

When you have finished testing your model in Simulink, it has to be prepared for
implementation on the real-time hardware. This means the plant model has to be replaced
by the I/O components that form the interfaces to the real plant.

 1.9

4.1 Creating the Implementation model

The SRV02-E FlexGage Interface

One encoder is used to measure the angular position of the servomotor, θ and a strain-
gage sensor is used to measure the link deflectionα . We must use two observers to
reconstruct the state variablesω , and υ which are not directly measured. These are the
derivatives ofθ , andα . Remembering that we cannot implement a pure derivative, we

use the low-pass band-limited observer 50
50
s

s +
.This filter is tuned to reduce the noise

introduced in the numerical derivative. Open a Simulink page and get the part Encoder
Input. Double-click on the Encoder input block to open its dialog box and set the Channel
Use to 0. Since the encoder has 4096 signal periods per revolution, get a gain block and
set its value to − . A negative sign is used for the encoder gain, because the
negative feedback gain is already implemented in the encoder wiring (i.e. positive voltage

 negative counts). Get a Transfer function block

2* 096pi / 4

⇒ 250
250s +

for the low-pass band-limited

filter. Use another block for the low-pass band-limited differentiator 250
250

s
s +

 to obtainω .

Get an analog input for getting the link deflection from the strain-gage sensor. Double-
click to open its dialog box and set the Channel to Use to 1. Get a gain block and set its
value to for the Strain Gage calibration factor and pass the signal through a band-

limited filter

1/19−
25

25s +
to reduce the noise. Add another low-pass band-limited filter 25

25
s

s +

to obtain the derivative of α as shown in Figure 1.7. This filter is tuned to reduce the
noise introduced in the numerical derivative.

Figure 1.7 Content of the subsystem Encoder and Strain Gage Input.

 1.10

To create a subsystem, enclose the blocks within a bounding box (Do not place any
outport blocks). Choose Create Subsystem from the Edit menu. Simulink replaces the
selected blocks with a subsystem block. Double-click to open the subsystem block.
Notice that the Simulink automatically adds Outport blocks. Label the Outports
appropriately as shown in Figure 1.8. Rename and title subsystem to Encoder and Strain
Gage Input, and save it as FlexLink_Interface.mdl. You know have the following
subsystem as shown in Figure 1.8.

Figure 1.8 Subsystem block for Encoder and Strain Gage Interface

If you double-click on the above subsystem it would display the underlying system as
shown in Figure 1.7.

The implementation model can be added on the previously constructed Simulink model.
This would enable you to obtain the simulation and actual results simultaneously. Open
FlexLink_Sim.mdl (your simulation model), save it under a new name (say
FlexLink_Imp.mdl). Start constructing the implementation diagram. Copy the
FlexLink_Interface.mdl (constructed in part 4.1, Figure 1.8) to the clipboard and paste it
on a new Simulink page as shown in Figure 1.9. Get the Analog Output block from the
Quanser MultiQ3 library and set the Channel Use to 0. Use a Signal Generator with
amplitude 30 degrees, and frequency 0.25 Hz, and use a D2R block to convert to radians.
Add four state feedback gain blocks and connect to the Interface outputs via some Sliders
Gain blocks. Complete the feedback loops and connect the resulting signal from the
summing block to the Quanser Analog output. Place as many Scopes as you like to
monitor the phase angles, etc.

 1.11

Figure 1.9 Simulation and Implementation diagram for Flexible Link project.

Your completed model should be the same as shown in Figure 1.9. Set the state feedback
gains to the values found in part (3.2), or run the m-file that returns the K array. The
gains in Simulink Simulation diagram are renamed to Ks(1) – Ks(4), so that if the value
of the variables K are changed at the MATLAB prompt for fine tuning, the values in the
Simulation diagram are not changed.

 1.12

4.2 Wiring diagram

Attach the Flexible Link module to the SRV02 as shown in Figure 1.1. Tighten the two
thumb screws very well. Clamp the SRV02 to the table so that it does not tip when the
link is oscillating.
Using the set of leads, universal power module (UPM), SRV-02 DC-motor, and the
connecting board of the MultiQ3 data acquisition board, complete the wiring diagram
shown in Figure 1.10 as follows:

From To Cable

Flexible Link sensor S1, S2 on UPM 6 pin mini Din to 6 pin mini Din

Encoder on SRV02 MultiQ/Encoder 0 5 pin Din to 5 pin Din

Motor on SRV02 UPM/To Load 6Pin to 4 Pin Din, Gain 1 Cable

D/A #0 on MultiQ UPM – From D/A RCA to 5 Pin Din

A/D # 0, 1, 2, 3, on MultiQ UPM- TO A/D 5 Din to 4xRCA

Figure 1.10 Wiring diagram for Flexible Link Project.

4.3 Compiling the model

In order to run the implementation model in real-time, you must first build the code for it.
Turn on the UPM. Start WinCon, Click on the MATLAB icon in WinCon server. This
launches MATLAB. In the Command menu set the Current Directory to the path where
your model FlexLink_Imp.mdl is. Before building the model, you must set the
simulation parameters. Pull down the Simulation dialog box and select Parameters. Set
the Start time to 0, the Stop time to 10, for Solver Option use Fixed-step and ode4
(Runge-Kutta) method set the Fixed-step size, i.e., the sampling rate to 0.001. In the
Simulation drop down menu set the model to External. Set the Matrix gains to the
values found in part (3.2), or run the m-file that returns the values of the matrix .

K
K

 1.13

Start the WinCon Server on your laptop and then use Client Connect, in the dialog box
type the proper Client workstation IP address. Generate the real-time code corresponding
to your diagram by selecting the “Build” option of the WinCon menu from the Simulink
window. The MATLAB window displays the progress of the code generation task. Wait
until the compilation is complete. The following message then appears: “### Successful
completion of Real-Time Workshop build procedure for model: FlexLink_Imp”.

4.4 Running the code

Following the code generation, WinCon Server and WinCon Client are automatically
started. The generated code is automatically downloaded to the Client and the system is
ready to run. To start the controller to run in real-time, click on the Start icon from the
WinCon Server window shown in Figure 1.11. It will turn red and display STOP. The
Flexible Link should have negligible oscillations at the tip of the beam during cyclic
rotation.

Clicking on the Stop icon will stop the real-time code and return to the green button.

Figure 1.11 WinCon Server

If at any point the system is not behaving as expected, immediately press STOP on the
WinCon server If you hear a whining or buzzing in the motor you are feeding high
frequency noise to the motor or motor is subjected to excessive voltage, immediately stop
the motor. Ask the instructor to recheck the implementation diagram and the state
feedback gains before proceeding again.

4.5 Plotting Data

You can now plot in real-time any variables of your diagram by clicking on the
“Plot/New/Scope” button in the WinCon Server window and selecting the variable you
wish to visualize. Select “gamma_o” and click OK. This opens one real-time plot. From
Scope pull-down menu, select Buffer and set the Buffer Size to 10. To plot more
variables in that same window, click on “File/Variables…” from the Scope window
menu. The names of all blocks in the Simulink model diagram appear in a Multiple Select
Variable Tree. You can then select the variable(s) you want to plot. In this case, select
“theta_in” and “gamma_os. From the File menu you can Save and Print the graph. If you
choose Save As M-File … you save the plot as M-file. Now at the MATLAB prompt if
you type the file name you can obtain the MATLAB Figure plot. You can type grid to
place a grid on the graph or edit the Figure as you wish.

 1.14

If you are sufficiently happy with your results and the actual response is close to the
simulated response, you can move on and begin the report for this project. A control
design usually involve some form of fine-tuning, and will more than likely be an iterative
process. If the actual response deviates from the desired response by large values you can
fine tune by adjusting the Slider Gains to get a response to meet the design specifications
more closely.

In WinCon Server, use File Save, this saves the compiled controller including all plots as
a .wpc (WinCon project) file. In case you want to run the experiment again, from
WinCon Server use File/Open to reload this .wcp file, and run the project in real time
independent of MATLAB/Simulink.

To prevent excessive wear to the motor and gearbox run the experiment for a short

To see the actual vibration of the Flexible link without the Strain Gage feedback, set the
Slider Gains corresponding to the feedback gains forα , andυ to 0. In this mode while
there is feedback for the servomotor position control, there is no strain Gage feedback
control. Click on the Start icon, you should now see clearly the oscillation at the tip of
the beam. Obtain a plot of gamma_o, theta_in and gamma_os in one graph, and a plot of
alpha_o and alpha_os in another graph.

5. Project Report

Discuss the assumptions and approximations made in modeling the servomotor and the
Flexible Link. Your report must include the detailed servo plant and the Flexible Link
block diagrams. Summarize the state feedback gains and comment on the simulation
results due to a step input in part 3.3. Comment on your results; how does experimental
response compare to simulated response? Discuss the reason for any deviation in the
actual transient response and the simulated response. Estimate the actual steady-state
error if any, and discuss the reasons for the steady-state error.

 1.15

	Flexible Link
	Purpose
	Introduction
	1. Mathematical Modeling
	1.1 Servomotor Model
	1.2 Flexible Link Model
	2. Regulator Design
	(a) Pole-placement
	(b) Optimal Regulator
	2.2 Closed-loop poles specifications - Pole-placement
	3. Pre Laboratory Assignment
	3.1 Open-loop Analysis
	3.2 Regulator Design
	3.3 Digital Simulation
	4. Laboratory Procedure
	4.1 Creating the Implementation model
	The SRV02-E FlexGage Interface
	4.2 Wiring diagram
	4.3 Compiling the model
	4.4 Running the code
	4.5 Plotting Data
	5. Project Report

