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PREFACE

This text is intended to provide assistance in solving computational problems associ-
ated with the study and application of linear control systems. It is written expressly
to support the use of MATLAB as a part of an introductory course in automatic con-
trol systems. MATLAB, developed by Math Works, Inc., is an interactive system for
scientific and engineering computation and must be purchased separately from this
book.

The objective is to introduce the user to some of the capabilities of MATLAB, and
the associated Control System Toolbox, so that it can be used to aid in the design and
analysis of control systems. The text contains sufficient detail and over 75 examples.
These examples are designed with two objectives in mind. First, to teach the student
how to write MATLAB programs, and second, to allow the user to advance rapidly in
solving more advanced control system problems. The organization of this text is as
follows:

Chapter 1 is an introduction to MATLAB and its capabilities. It describes sev-
eral examples dealing with matrix manipulations, complex algebra, and the graphics
features of MATLAB.

Chapter 2 shows how to obtain the numerical solution of differential equations,
polynomial roots and characteristic polynomials, poles and zeros of transfer functions,
and partial fraction expansion.

Chapter 3 explains how to perform state-space transformations such as state-
space to transfer function, state-space to zero-pole, transfer function to state-space,
conversion of block diagrams to state-space models and reduced transfer functions.

Chapter 4 deals with time response of second-order systems, time domain per-
formance specifications, and the effects of adding poles and zeros to the closed-loop
transfer function. An example of model reduction is also presented. Examples of fre-
quency response, including some frequency domain specifications, are given.

Chapter 5 covers some of the essential characteristics of feedback control sys-
tems such as stability, sensitivity, and steady-state errors.

Chapter 6 includes Routh-Hurwitz Stability Criterion, root-locus analysis, de-
sign of phase-lead, phase-lag, and PID controllers by root-locus techniques.

vi
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Chapter 7 deals with gain and phase margin, Bode, Nyquist, Nichols plots, and
design of control systems in frequency domain.

Chapter 8 deals with the design of control systems based on modern control
theory. Pole-placement, state estimator and optimal regulator designs are presented.

I wish to express my sincere appreciation to my colleague Professor George
Smith, of Milwaukee School of Engineering for his careful and meticulous review of
the manuscript and his numerous constructive suggestions, which improved its con-
tent. I am especially grateful to Professor Ray Palmer, chairman of the department of
Electrical Engineering and Computer Science, Milwaukee School of Engineering, for
his aid and encouragement to begin the project in the first place. I express my pro-
found gratitude to Ms. Lynn Kallas who spent many hours editing and correcting the
manuscript. I am appreciative of the assistance given by the reviewers of this book:
Professor Ashok Ambardar, Michigan Technological University; Professor Thomas
J. Csermely, Syracuse University; Professor Shankar P. Bhattacharyya, Texas A&M;
Professor Lee Keel, Tennessee State University; Professor Surjit S. Mahil, Purdue
University Calumet. The constructive comments and encouragement provided by my
editor Anne Brown of McGraw-Hill are greatly appreciated. Finally, I express my
gratitude and love to my family, without whom this undertaking would not have been
possible.
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CHAPTER

1
INTRODUCTION

TO MATLAB

MATLAB, developed by Math Works Inc., is a software package for high performance
numerical computation and visualization. The combination of analysis capabilities,
flexibility, reliability, and powerful graphics makes MATLAB the premier software
package for electrical engineers.

MATLAB provides an interactive environment with hundreds of reliable and ac-
curate built-in mathematical functions. These functions provide solutions to a broad
range of mathematical problems including matrix algebra, complex arithmetic, linear
systems, differential equations, signal processing, optimization, nonlinear systems,
and many other types of scientific computations. The most important feature of MAT-
LAB is its programming capability, which is very easy to learn and to use, and which
allows user-developed functions. It also allows access to Fortran algorithms and C
codes by means of external interfaces. There are several optional toolboxes written for
special applications such as signal processing, control systems design, system identi-
fication, statistics, neural networks, fuzzy logic, symbolic computations, and others.
MATLAB has been enhanced by the very powerful SIMULINK program. SIMULINK is
a graphical mouse-driven program for the simulation of dynamic systems. SIMULINK
enables students to simulate linear, as well as nonlinear, systems easily and efficiently.

The following section describes the use of MATLAB and is designed to give
a quick familiarization with some of the commands and capabilities of MATLAB.
For a description of all other commands, MATLAB functions, and many other useful
features, the reader is referred to the MATLAB User’s Guide.

1



2 1. INTRODUCTION TO MATLAB

1.1 INSTALLING THE TEXT TOOLBOX

The software diskette included with the book contains all the developed functions
and chapter examples. The file names for chapter examples begin with the letters ch.
For example, the M-file for Example 2.4 is ch2ex04. Create a subdirectory, such as
HS, where the MATLABR11 toolbox resides. Copy all the files on the diskette to the
subdirectory MATLABR11 nTOOLBOXnHS.

In the MATLAB 5.3 Command Window open the Path Browser by selecting Set
Path from the File menu. Press to open the Add to Path window. Open the toolbox
folder and double-click on the HS folder. Choose Add to Back option and click on
Save Settings to save the new path permanently.

1.2 RUNNING MATLAB

MATLAB supports almost every computational platform. MATLAB for WINDOWS is
started by clicking on the MATLAB icon. The Command window is launched, and
after some messages such as intro, demo, help help, info, and others, the prompt “ �
” is displayed. The program is in an interactive command mode. Typing who or whos
displays a list of variable names currently in memory. Also, the dir command lists
all the files on the default directory. MATLAB has an on-line help facility, and its use
is highly recommended. The command help provides a list of files, built-in functions
and operators for which on-line help is available. The command

help function name

will give information on the specified function as to its purpose and use. The command

help help

will give information as to how to use the on-line help.
MATLAB has a demonstration program that shows many of its features. The

command demo brings up a menu of the available demonstrations. This will provide
a presentation of the most important MATLAB facilities. Follow the instructions on
the screen – it is worth trying.

MATLAB 5.3 includes a Help Desk facility that provides access to on line help
topics, documentation, getting started with MATLAB, online reference materials, MAT-
LAB functions, real-time Workshop, and several toolboxes. The online documentation
is available in HTML, via either Netscape Navigator or Microsoft Internet Explorer.
The command helpdesk launches the Help Desk, or you can use the Help menu to
bring up the Help Desk.

If an expression with correct syntax is entered at the prompt in the Command
window, it is processed immediately and the result is displayed on the screen. If an
expression requires more than one line, the last character of the previous line must
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contain three dots “...”. Characters following the percent sign are ignored. The (%)
may be used anywhere in a program to add clarifying comments. This is especially
helpful when creating a program. The command clear erases all variables in the Com-
mand window.

MATLAB is also capable of executing sequences of commands that are stored in
files, known as script files or M-files. Clicking on File, Open M-file, opens the Edit
window. A program can be written and saved in ASCII format with a filename having
extension .m in the directory where MATLAB runs. To run the program, click on the
Command window and type the filename without the .m extension at the MATLAB
command “�”. You can view the text Edit window simultaneously with the Com-
mand window. That is, you can use the two windows to edit and debug a script file
repeatedly and run it in the Command window without ever quitting MATLAB.

In addition to the Command window and Edit window are the Graphic windows
or Figure windows with grey (default) background. The plots created by the graphic
commands appear in these windows.

Another type of M-file is a function file. A function provides a convenient way
to encapsulate some computation, which can then be used without worrying about
its implementation. In contrast to the script file, a function file has a name following
the word “function” at the beginning of the file. The filename must be the same as
the “function” name. The first line of a function file must begin with the function
statement having the following syntax

function [output arguments] = function name (input arguments)

The output argument(s) are variables returned. A function need not return a value. The
input arguments are variables passed to the function. Variables generated in function
files are local to the function. The use of global variables make defined variables com-
mon and accessible between the main script file and other function files. For example,
the statement global R S T declares the variables R, S, and T to be global without
the need for passing the variables through the input list. This statement goes before
any executable statement in the script and function files that need to access the values
of the global variables.

Normally, while an M-file is executing, the commands of the file are not dis-
played on the screen. The command echo allows M-files to be viewed as they exe-
cute. echo off turns off the echoing of all script files. Typing what lists M-files and
Mat-files in the default directory.

MATLAB follows conventional Windows procedure. Information from the com-
mand screen can be printed by highlighting the desired text with the mouse and then
choosing the print Selected ... from the File menu. If no text is highlighted the en-
tire Command window is printed. Similarly, selecting print from the Figure window
sends the selected graph to the printer. For a complete list and help on general purpose
commands, type help general.
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1.3 VARIABLES

Expressions typed without a variable name are evaluated by MATLAB, and the result
is stored and displayed by a variable called ans. The result of an expression can be
assigned to a variable name for further use. Variable names can have as many as 19
characters (including letters and numbers). However, the first character of a variable
name must be a letter. MATLAB is case-sensitive. Lower and uppercase letters repre-
sent two different variables. The command casesen makes MATLAB insensitive to the
case. Variables in script files are global. The expressions are composed of operators
and any of the available functions. For example, if the following expression is typed

x = exp(-0.2696*.2)*sin(2*pi*0.2)/(0.01*sqrt(3)*log(18))

the result is displayed on the screen as

x =
18.0001

and is assigned to x. If a variable name is not used, the result is assigned to the
variable ans. For example, typing the expression

250/sin(pi/6)

results in

ans =
500.0000

If the last character of a statement is a semicolon (;), the expression is executed, but
the result is not displayed. However, the result is displayed upon entering the variable
name. The command disp may be used to display a variable without printing its name.
For example, disp(x) displays the value of the variable without printing its name. If x
contains a text string, the string is displayed.

1.4 OUTPUT FORMAT

While all computations in MATLAB are done in double precision, the default format
prints results with five significant digits. The format of the displayed output can be
controlled by the following commands.
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MATLAB Command Display
format Default. Same as format short
format short Scaled fixed point format with 5 digits
format long Scaled fixed point format with 15 digits
format short e Floating point format with 5 digits
format long e Floating point format with 15 digits
format short g Best of fixed or floating point with 5 digits
format long g Best of fixed or floating point with 15 digits
format hex Hexadecimal format
format + The symbols +, - and blank are printed for

positive, negative, and zero elements
format bank Fixed format for dollars and cents
format rat Approximation by ratio of small integers
format compact Suppress extra line feeds
format loose Puts the extra line feeds back in

For more flexibility in the output format, the command fprintf displays the result
with a desired format on the screen or to a specified filename. The general form of
this command is the following.

fprintf{fstr, A,...)

writes the real elements of the variable or matrix A,... according to the specifi-
cations in the string argument of fstr. This string can contain format characters
like ANCI C with certain exceptions and extensions. fprintf is ”vectorized” for the
case when A is nonscalar. The format string is recycled through the elements of A
(columnwise) until all the elements are used up. It is then recycled in a similar man-
ner through any additional matrix arguments. The characters used in the format string
of the commands fprintf are listed in the table below.

Format codes Control characters
%e scientific format, lower case e nn new line
%E scientific format, upper case E nr beginning of the line
%f decimal format nb back space
%s string nt tab
%u integer ng new page
%i follows the type 00 apostrophe
%x hexadecimal, lower case nn back slash
%X hexadecimal, upper case na bell

A simple example of the fprintf is

fprintf('Area = %7.3f Square meters \n', pi*4.5^2)

The results is
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Area = 63.617 Square meters

The %7:3f prints a floating point number seven characters wide, with three digits after
the decimal point. The sequence nn advances the output to the left margin on the next
line.

The following command displays a formatted table of the natural logarithmic for num-
bers 10, 20, 40, 60, and 80

x = [10; 20; 40; 60; 80];
y = [x, log(x)];
fprintf('\n Number Natural log\n')
fprintf('%4i \t %8.3f\n',y')

The result is

Number Natural log
10 2.303
20 2.996
40 3.689
60 4.094
80 4.382

An M-file can prompt for input from the keyboard. The command input causes
the computer to request data from the keyboard. For example, the command

R = input('Enter radius in meter ')

displays the text string

Enter radius in meter

and waits for a number to be entered. If a number, say 4.5 is entered, it is assigned to
variable R and displayed as

R =
4.5000

The command keyboard placed in an M-file will stop the execution of the file
and permit the user to examine and change variables in the file. Pressing cntrl-z ter-
minates the keyboard mode and returns to the invoking file. Another useful command
is diary A:filename. This command creates a file on drive A, and all output displayed
on the screen is sent to that file. diary off turns off the diary. The contents of this file
can be edited and used for merging with a word processor file. Finally, the command
save filename can be used to save the expressions on the screen to a file named file-
name.mat, and the statement load filename can be used to load the file filename.mat.

MATLAB has a useful collection of transcendental functions, such as exponen-
tial, logarithm, trigonometric, and hyperbolic functions. For a complete list and help
on operators, type help ops, and for elementary math functions, type help elfun.
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1.5 CHARACTER STRING

A sequence of characters in single quotes is called a character string or text variable.

c ='Good'

results in

c = Good

A text variable can be augmented with more text variables, for example,

cs = [c, ' luck']

produces

cs =
Good luck

1.6 VECTOR OPERATIONS

An n vector is a row or a column array of n numbers. In MATLAB, elements enclosed
by brackets and separated by semicolons generate a column vector.

For example, the statement

X = [ 2; -4; 8]

results in

X =
2
-4
8

If elements are separated by blanks or commas, a row vector is produced. Elements
may be any expression. The statement

R = [tan(pi/4) sqrt(9) -5]

results in the output

R =
1.0000 3.0000 -5.0000

The transpose of a column vector results in a row vector, and vice versa. For example

Y=R'

will produce
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Y =
1.0000
3.0000
-5.0000

MATLAB has two different types of arithmetic operations. Matrix arithmetic op-
erations are defined by the rules of linear algebra. Array arithmetic operations are
carried out element-by-element. The period character (.) distinguishes the array oper-
ations from the matrix operations. However, since the matrix and array operations are
the same for addition and subtraction, the character pairs .+ and .- are not used.

Vectors of the same size can be added or subtracted, where addition is performed
componentwise. However, for multiplication, specific rules must be followed in order
to obtain the correct resulting values. The operation of multiplying a vector X with a
scalar k (scalar multiplication) is performed componentwise. For example P = 5 �R
produces the output

P =
5.0000 15.0000 -25.0000

The inner product or the dot product of two vectors X and Y denoted by hX;Y i is
a scalar quantity defined by

Pn
i=1 xiyi. If X and Y are both column vectors defined

above, the inner product is given by

S = X'*Y

and results in

S =
-50

The operator (.� performs element-by-element operation. For example, for the previ-
ously defined vectors, X and Y , the statement

E = X.*Y

results in

E =
2

-12
-40

The operator .= performs element-by-element division. The two arrays must have the
same size, unless one of them is a scalar. Array powers or element-by-element powers
are denoted by ( .^). The trigonometric functions, and other elementary mathematical
functions such as abs, sqrt, real, and log, also operate element by element.

Various norms (measure of size) of a vector can be obtained. For example, the Eu-
clidean norm is the square root of the inner product of the vector and itself. The
command
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N = norm(X)

produces the output

N =
9.1652

The angle between two vectorsX and Y is defined by cos � = hX;Y i
kXk kY k . The statement

Theta = acos( X'*Y/(norm(X)*norm(Y)) )

results in the output

Theta =
2.7444

where Theta is in radians.
The zero vector, also referred to as origin, is a vector with all components equal

to zero. For example, to build a zero row vector of size 4, the following command

Z = zeros(1, 4)

results in

Z =
0 0 0 0

The one vector is a vector with each component equal to one. To generate a one vector
of size 4, use

I = ones(1, 4)

The result is

I =
1 1 1 1

In MATLAB, the colon (:) can be used to generate a row vector. For example

x = 1:8

generates a row vector of integers from 1 to 8.

x =
1 2 3 4 5 6 7 8

For increments other than unity, the following command

z = 0 : pi/3 : pi

results in
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z =
0000 1.0472 2.0944 3.1416

For negative increments

x = 5 : -1:1

results in

x =
5 4 3 2 1

Alternatively, special vectors can be created, the command linspace(x, y, n) creates
a vector with n elements that are spaced linearly between x and y. Similarly, the
command logspace(x, y, n) creates a vector with n elements that are spaced in even
logarithmic increments between 10x and 10y .

1.7 ELEMENTARY MATRIX OPERATIONS

In MATLAB, a matrix is created with a rectangular array of numbers surrounded by
brackets. The elements in each row are separated by blanks or commas. A semicolon
must be used to indicate the end of a row. Matrix elements can be any MATLAB
expression. The statement

A = [ 6 1 2; -1 8 3; 2 4 9]

results in the output

A =
6 1 2
-1 8 3
2 4 9

If a semicolon is not used, each row must be entered in a separate line as shown below.

A = [ 6 1 2
-1 8 3
2 4 9]

The entire row or column of a matrix can be addressed by means of the symbol
(:). For example

r3 = A(3, :)

results in

r3 =
2 4 9

Similarly, the statement A(:; 2) addresses all elements of the second column in A.
Matrices of the same dimension can be added or subtracted. Two matrices, A

and B, can be multiplied together to form the product AB if they are conformable.
Two symbols are used for nonsingular matrix division. AnB is equivalent to A�1B,
and A=B is equivalent to AB�1
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Example 1.1

For the matrix equation below, AX = B, determine the vector X .

2
4 4 �2 �10

2 10 �12
�4 �6 16

3
5
2
4 x1
x2
x3

3
5 =

2
4 �10

32
�16

3
5

The following statements

A = [4 -2 -10; 2 10 -12; -4 -6 16];
B = [-10; 32; -16];
X = A\B

result in the output

X =
2.0000
4.0000
1.0000

In addition to the built-in functions, numerous mathematical functions are avail-
able in the form of M-files. For the current list and their applications, see the MATLAB
User’s Guide.

Example 1.2

Use the inv function to determine the inverse of matrix A in Example 1.1 and then
determine X . The following statements

A = [4 -2 -10; 2 10 -12; -4 -6 16];
B = [-10; 32; -16];
C = inv(A)
X = C*B

result in the output

C =
2.2000 2.3000 3.1000
0.4000 0.6000 0.7000
0.7000 0.8000 1.1000

X =
2.0000
4.0000
1.0000

Example 1.3

Use the lu factorization function to express the matrixA of Example 1.2 as the product
of upper and lower triangular matrices, A = LU . Then find X from X = U�1L�1B.
Typing
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A = [ 4 -2 -10; 2 10 -12; -4 -6 16 ]
B = [-10; 32 -16];
[L,U] = lu(A)

results in

L =
1.0000 0 0
0.5000 1.0000 0
-1.0000 -0.7273 1.0000

U =
4.0000 -2.0000 -10.0000

0 11.0000 -7.0000
0 0 0.9091

Now entering

X = inv(U)*inv(L)*B

results in

X =
2.0000
4.0000
1.0000

Dimensioning is automatic in MATLAB. You can find the dimensions and rank of
an existing matrix with the size and rank statements. For vectors, use the command
length.

1.7.1 UTILITY MATRICES

There are many special utility matrices which are useful for matrix operations. A few
examples are

eye(m, n) Generates an m-by-n identity matrix.
zeros(m, n) Generates an m-by-n matrix of zeros.
ones(m, n) Generates an m-by-n matrix of ones.
diag(x) Produces a diagonal matrix with the

elements of x on the diagonal line.

For a complete list and help on elementary matrices and matrix manipulation, type
help elmat. There are many other special built-in matrices. For a complete list and
help on specialized matrices, type help specmat.

1.7.2 EIGENVALUES

If A is an n-by-n matrix, the n numbers � that satisfy Ax = �x are the eigenvalues
of A. They are found using eig(A), which returns the eigenvalues in a column vector.
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Eigenvalues and eigenvectors can be obtained with a double assignment statement
[X;D] = eig(A). The diagonal elements of D are the eigenvalues and the columns
of X are the corresponding eigenvectors such that AX = XD.

Example 1.4

Find the eigenvalues and the eigenvectors of the matrix A given by

A =

2
4 0 1 �1
�6 �11 6
�6 �11 5

3
5

A = [ 0 1 -1; -6 -11 6; -6 -11 5];
[X,D] = eig(A)

The eigenvalues and the eigenvectors are obtained as follows

X = D =
-0.7071 0.2182 -0.0921 -1 0 0
0.0000 0.4364 -0.5523 0 -2 0
-0.7071 0.8729 -0.8285 0 0 -3

1.8 COMPLEX NUMBERS

All the MATLAB arithmetic operators are available for complex operations. The imag-
inary unit

p�1 is predefined by two variables i and j. In a program, if other values
are assigned to i and j, they must be redefined as imaginary units, or other characters
can be defined for the imaginary unit.

j = sqrt(-1) or i = sqrt(-1)

Once the complex unit has been defined, complex numbers can be generated.

Example 1.5

Evaluate the following function V = Zc cosh g+sinh g=Zc, where Zc = 200+j300
and g = 0:02 + j1:5

i = sqrt(-1); Zc = 200 + 300*i; g = 0.02 + 1.5*i;
v = Zc *cosh(g) + sinh(g)/Zc

results in the output

v =
8.1672 + 25.2172i

It is important to note that, when complex numbers are entered as matrix elements
within brackets, we avoid any blank spaces. If spaces are provided around the complex
number sign, it represents two separate numbers.
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Example 1.6

In the circuit shown in Figure 1.1, determine the node voltages V1 and V2 and the
power delivered by each source.
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y10 =
1:15 � j0:8

y20 =
0:55 � j0:4

V1 V2

FIGURE 1.1
Circuit for Example 1.6.

Kirchhoff’s current law results in the following matrix node equation.

�
1:5� j2:0 �:35 + j1:2

�:35 + j1:2 0:9� j1:6

� �
V1
V2

�
=

�
30 + j40
20 + j15

�

and the complex power of each source is given by S = V I�. The following program
is written to yield solutions to V1 ,V2 and S using MATLAB.

j=sqrt(-1) % Defining j
I=[30+j*40; 20+j*15] % Column of node current phasors
Y=[1.5-j*2 -.35+j*1.2; -.35+j*1.2 .9-j*1.6]

% Complex admittance matrix Y
disp('The solution is') V=inv(Y)*I % Node voltage solution
S=V.*conj(I) % complex power at nodes

result in

The solution is
V =

3.5902 + 35.0928i
6.0155 + 36.2212i

S =
1511.4 + 909.2i
663.6 + 634.2i

In MATLAB, the conversion between polar and rectangular forms makes use of the
following functions:
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Operation Description
z = a+ bi or z = a+ j � b Rectangular from
real(z) Returns real part of z
imag(z) Returns imaginary part of z
abs(z) Absolute value of z
angle(z) Phase angle of z
conj(z) Conjugate of z
z =M � exp(j � �) converts M 6 � to rectangular form

The prime (0) transposes a real matrix; but for complex matrices, the symbol (.0) must
be used to find the transpose.

1.9 POLYNOMIAL ROOTS
AND CHARACTERISTIC POLYNOMIAL

If p is a row vector containing the coefficients of a polynomial, roots(p) returns a
column vector whose elements are the roots of the polynomial. If r is a column vector
containing the roots of a polynomial, poly(r) returns a row vector whose elements are
the coefficients of the polynomial.

Example 1.7

Find the roots of the following polynomial.

s6 + 9s5 + 31:25s4 + 61:25s3 + 67:75s2 + 14:75s + 15

The polynomial coefficients are entered in a row vector in descending powers.
The roots are found using roots.

p = [ 1 9 31.25 61.25 67.75 14.75 15 ]
r = roots(p)

The polynomial roots are obtained in column vector

r =
-4.0000
-3.0000
-1.0000 + 2.0000i
-1.0000 - 2.0000i
0.0000 + 0.5000i
0.0000 - 0.5000i

Example 1.8

The roots of a polynomial are �1, �2, �3� j4. Determine the polynomial equation.
Complex numbers may be entered using function i or j. The roots are then

entered in a column vector. The polynomial equation is obtained using poly as follows
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i = sqrt(-1)
r = [-1 -2 -3+4*i -3-4*i ]
p = poly(r)

The coefficients of the polynomial equation are obtained in a row vector.

p =
1 9 45 87 50

Therefore, the polynomial equation is

s4 + 9s3 + 45s2 + 87s+ 50 = 0

Example 1.9

Determine the roots of the characteristic equation of the following matrix.

A =

2
4 0 1 �1
�6 �11 6
�6 �11 5

3
5

The characteristic equation of the matrix is found by poly, and the roots of this equa-
tion are found by roots.

A = [ 0 1 -1; -6 -11 6; -6 -11 5];
p = poly(A)
r = roots(p)

The result is as follows

p =
1.0000 6.0000 11.0000 6.0000

r = -3.0000
-2.0000
-1.0000

The roots of the characteristic equation are the same as the eigenvalues of matrix A.
Thus, in place of the poly and roots function, we may use

r = eig(A)

1.9.1 PRODUCT AND DIVISION OF POLYNOMIALS

The product of polynomials is the convolution of the coefficients. The division of
polynomials is obtained by using the deconvolution command.
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Example 1.10

(a) Given A = s2 + 7s+ 12, and B = s2 + 9, find C = AB.
(b) Given Z = s4 + 9s3 + 37s2 + 81s+ 52, and Y = s2 + 4s+ 13, find X = Z

Y .

The commands

A = [1 7 12]; B = [1 0 9];
C = conv(A, B)
Z = [1 9 37 81 52]; Y = [1 4 13];
[X, r] = deconv(Z, Y)

result in

C =
1 7 21 63 108

X =
1 5 4

r =
0 0 0

1.9.2 POLYNOMIAL CURVE FITTING

In general, a polynomial fit to data in vector x and y is a function p of the form

p(x) = c1x
d + c2x

d�1 + � � � + cn

The degree is d, and the number of coefficients is n = d+1. Given a set of points
in vectors x and y, polyfit(x, y, d) returns the coefficients of dth order polynomial in
descending powers of x.

Example 1.11

Find a polynomial of degree 3 to fit the following data

x 0 1 2 4 6 10
y 1 7 23 109 307 1231

x = [ 0 1 2 4 6 10];
y = [ 1 7 23 109 307 1231];
c = polyfit(x,y,3)

The coefficients of a third degree polynomial are found as follows

c =
1.0000 2.0000 3.0000 1.0000

i.e., y = x3 + 2x2 + 3x+ 1.
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1.9.3 POLYNOMIAL EVALUATION

If c is a vector whose elements are the coefficients of a polynomial in descending
powers, the polyval(c, x) is the value of the polynomial evaluated at x. For example,
to evaluate the above polynomial at points 0, 1, 2, 3, and 4, use the commands

c = [1 2 3 1];
x = 0:1:4;
y = polyval(c, x)

which result in

y =
7 23 55 109

1.9.4 PARTIAL-FRACTION EXPANSION

[r, p, k] = residue[b, a] finds the residues, poles, and direct terms of a partial fraction
expansion of the ratio of two polynomials

P (s)

Q(s)
=
bms

m + bm�1s
m�1 + � � � + b1s+ b0

ansn + an�1sn�1 + � � �+ a1s+ a0

Vectors b and a specify the coefficients of the polynomials in descending powers of
s. The residues are returned in column vector r, the pole locations in column vector
p, and the direct terms in row vector k.

Example 1.12

Determine the partial fraction expansion for

F (s) =
2s3 + 9s+ 1

s3 + s2 + 4s+ 4

b = [ 2 0 9 1];
a = [ 1 1 4 4];
[r,p,k] = residue(b,a)

The result is as follows

r =
0.0000 -0.2500i
0.0000 +0.2500i
-2.0000

p =
0.0000 +2.0000i
0.0000 -2.0000i
-1.0000

K =
2.0000
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Therefore the partial fraction expansion is

2 +
�2
s+ 1

+
j0:25

s+ j2
+
�j0:25
s� j2

= 2 +
�2
s+ 1

+
1

s2 + 4

[b, a] = residue(r, p, K) converts the partial fraction expansion back to the polyno-
mial P (s)=Q(s).

For a complete list and help on matrix analysis, linear equations, eigenvalues,
and matrix functions, type help matfun.

1.10 GRAPHICS

MATLAB can create high-resolution, publication-quality 2-D, 3-D, linear, semilog,
log, polar, bar chart and contour plots on plotters, dot-matrix printers, and laser print-
ers. Some of the 2-D graph types are plot, loglog, semilogx, semi -logy, polar, and
bar. The syntax for the above plots includes the following optional symbols and col-
ors.

COLOR SPECIFICATION LINE STYLE-OPTION
Long name Short name Style Symbol
black k solid –
blue b dashed - -
cyan c dotted :
green g dash-dot -.
magenta m point .
red r circle o
white w x-mark x
yellow y plus +

star *

Some of the Specialized 2-D plots are listed below:

area Filled area plot
bar Bar graph
barh Horizontal bar graph
comet Comet-like trajectory
ezplot Easy to use function plotter
ezpolar Easy to use polar coordinate plotter
feather Feather plot
fill Filled 2-D polygons
fplot Plot function
hist Histogram
pareto Pareto chart
pie Pie chart
plotmatrix Scatter plot matrix
stem Discrete sequence or ”stem” plot
stairs Stairstep plot
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You have three options for plotting multiple curves on the same graph. For example,

plot(x1, y1,'r', x2, y2, '+b', x3, y3, '--')

plots (x1, y1) with a solid red line, (x2, y2) with a blue + mark, and (x3, y3)

with a dashed line. If X and Y are matrices of the same size, plot(X, Y) will plot the
columns of Y versus the column of X.

Alternatively, the hold command can be used to place new plots on the previous
graph. hold on holds the current plot and all axes properties; subsequent plot com-
mands are added to the existing graph. hold off returns to the default mode whereby
a new plot command replaces the previous plot. hold, by itself, toggles the hold state.

Another way for plotting multiple curves on the same graph is the use of the
line command. For example, if a graph is generated by the command plot(x1,

y1), then the commands

line(x2, y2, '+b')
line(x3, y3, '--')

Add curve (x2, y2) with a blue + mark, and (x2, y2) with a dashed line to the
existing graph generated by the previous plot command. Multiple figure windows can
be created by the figure command. figure, by itself, opens a new figure window, and
returns the next available figure number, known as the figure handle. figure(h) makes
the figure with handle h the current figure for subsequent plotting commands. Plots
may be annotated with title, x � y labels and grid. The command grid adds a grid
to the graph. The commands title(’Graph title ’) titles the plot, and xlabel(’x-axis
label ’), ylabel(’y-axis label ’) label the plot with the specified string argument. The
command text(x-coordinate, y-coordinate, ’text’) can be used for placing text on the
graph, where the coordinate values are taken from the current plot. For example, the
statement

text(3.5, 1.5, 'Voltage')

will write Voltage at point (3.5, 1.5) in the current plot. Alternatively, you can use the
gtext(’text’) command for interactive labeling. Using this command after a plot pro-
vides a crosshair in the Figure window and lets the user specify the location of the text
by clicking the mouse at the desired location. Finally, the command legend(string1,
string2, string3, ...) may be used to place a legend on the current plot using the spec-
ified strings as labels. This command has many optional arguments. For example,
legend( linetype1, string1, linetype2, string2, linetype3, string3, ...) specifies the line
types/color for each label at a suitable location. However, you can move the legend
to a desired location with the mouse. legend off removes the legend from the current
axes.

MATLAB provides automatic scaling. The command axis([x min. x max. y min.
y max.]) enforces the manual scaling. For example

axis([-10 40 -60 60])
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produces an x-axis scale from �10 to 40 and a y-axis scale from �60 to 60. Typing
axis again or axis(’auto’) resumes auto scaling. Also, the aspect ratio of the plot can
be made equal to one with the command axis(’square’). With a square aspect ratio,
a line with slope 1 is at a true 45 degree angle. axis(’equal’) will make the x- and
y-axis scaling factor and tic mark increments the same. For a complete list and help
on general purpose graphic functions, and two- and three-dimensional graphics, see
help graphics, help plotxy, and help plotxyz.

There are many other specialized commands for two-dimensional plotting. Among
the most useful are the semilogx and semilogy, which produce a plot with an x-axis
log scale and a y-axis log scale. An interesting graphic command is the comet plot.
The command comet(x, y) plots the data in vectors x and y with a comet moving
through the data points, and you can see the curve as it is being plotted. For a complete
list and help on general purpose graphic functions and two-dimensional graphics, see
help graphics and help plotxy.

1.11 GRAPHICS HARD COPY

The easiest way to obtain hard-copy printout is to make use of the Windows built-in
facilities. In the Figure window, you can pull down the file menu and click on the
Print command to send the current graph directly to the printer. You can also import
a graph to your favorite word processor. To do this, select Copy options from the Edit
pull-down menu, and check mark the Invert background option in the dialog box to
invert the background. Then, use Copy command to copy the graph into the clipboard.
Launch your word processor and use the Paste command to import the graph.

Some word processors may not provide the extensive support of the Windows
graphics and the captured graph may be corrupted in color. To eliminate this problem
use the command

system dependent(14, 'on')

which sets the metafile rendering to the lowest common denominator. To set the
metafile rendering to normal, use

system dependent(14, 'off')

In addition MATLAB provides a function called print that can be used to pro-
duce high resolution graphic files. For example,

print -dhpgl [filename]

saves the graph under the specified filename with extension hgl. This file may be pro-
cessed with an HPGL- compatible plotter. Similarly, the command

print -dilll [filename]
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produces a graphic file compatible with the Adobe Illustrator’88. Another print op-
tion allows you to save and reload a figure. The command

print -dmfile [ filename ]

produces a MAT file and M-file to reproduce the figure again.
In the Figure window, from the File pull-down menu you can use Save As... to save
the figure with extension fig. This file can be opened in the Figure window again.
Also, from the File pull-down menu you can use Expert... to save the graph in several
different format, such as: emf, bmp, eps, ai, jpg, tiff, png, pcx, pbm, pgm, and ppm
extensions.

Example 1.13

Create a linear X-Y plot for the following variables.

x 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
y 10 10 16 24 30 38 52 68 82 96 123

For a small amount of data, you can type in data explicitly using brackets.

x = [ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0];
y = [10 10 16 24 30 38 52 68 82 96 123];
plot(x, y), grid
xlabel('x'), ylabel('y'), title('A simple plot example')

plot(x, y) produces a linear plot of y versus x on the screen, as shown in Figure 1.2.

For large amounts of data, use the text editor to create a file with extension m. Typing
the filename creates your data in the workspace.

Example 1.14

Fit a polynomial of order 2 to the data in Example 1.13. Plot the given data point with
symbol x, and the fitted curve with a solid line. Place a boxed legend on the graph.

The command p = polyfit(x, y, 2) is used to find the coefficients of a polynomial
of degree 2 that fits the data, and the command yc = polyval(p, x) is used to evaluate
the polynomial at all values in x. We use the following command.

x = [ 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0];
y = [10 10 16 24 30 38 52 68 82 96 123];
p = polyfit(x, y, 2) % finds the coefficients of a polynomial

% of degree 2 that fits the data
yc = polyval(p, x);%polynomial is evaluated at all points in x
plot(x, y,'x', x, yc)%plots data with x and fitted polynomial
xlabel('x'), ylabel('y'), grid
title('Polynomial curve fitting')
legend('Actual data', 'Fitted polynomial', 4)
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FIGURE 1.2
Example of X-Y plot.

The result is the array of coefficients of the polynomial of degree 2, and is

p =
4.0232 2.0107 9.6783

Thus, the parabola 4:0x2 + 2:0x + 9:68 is found that fits the given data in the
least-square sense. The plots are shown in Figure 1.3.

Example 1.15

Plot function y = 1 + e�2t sin(8t � �=2) from 0 to 3 seconds. Find the time cor-
responding to the peak value of the function and the peak value. The graph is to be
labeled, titled, and have grid lines displayed.

Remember to use .* for the element-by-element multiplication of the two terms in the
given equation. The command [cp, k] = max(c) returns the peak value and the index
k corresponding to the peak time. We use the following commands.

t=0:.005:3; c = 1+ exp(-2*t).*sin(8*t - pi/2);
[cp, k] = max(c) % cp is the maximum value of c at interval k
tp = t(k) % tp is the peak time
plot(t, c), xlabel(' t - sec'), ylabel('c'), grid
title('Damped sine curve')
text(0.6, 1.4, ['cp =',num2str(cp)])%Text in quote & the value

% of cp are printed at the specified location
text(0.6, 1.3, ['tp = ',num2str(tp)])
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FIGURE 1.3
Fitting a parabola to the data in Example 1.13.

The result is

cp =
1.4702

k =
73

tp =
0.3600

and the plot is shown in Figure 1.4.
An interactive way to find the data points on the curve is by using the ginput

command. Entering [x, y] = ginput will put a crosshair on the graph. Position the
crosshair at the desired location on the curve, and click the mouse. You can repeat
this procedure for extracting coordinates for as many points as required. When the
return key is pressed, the input is terminated and the extracted data is printed on the
command menu. For example, to find the peak value and the peak time for the function
in Example 1.15, try

[tp, cp] = ginput

A crosshair will appear. Move the crosshair to the peak position, and click the mouse.
Press the return key to get

cp =
1.47

tp =
0.36
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FIGURE 1.4
Graph of Example 1.15.

subplot splits the Figure window into multiple portions, in order to show several plots
at the same time. The statement subplot(m, n, p) breaks the Figure window into anm-
by-n box and uses the pth box for the subsequent plot. Thus, the command subplot(2,
2, 3), plot(x,y) divides the Figure window into four subwindows and plots y versus x
in the third subwindow, which is the first subwindow in the second row. The command
subplot(111) returns to the default Figure window. This is demonstrated in the next
example.

Example 1.16

Divide the Figure window into four partitions, and plot the following functions for !t
from 0 to 3� in steps of 0:05.

1. Plot v = 120 sin!t and i = 100 sin(!t � �=4) versus !t on the upper left
portion.

2. Plot p = vi on the upper right portion.

3. Given Fm = 3:0, plot fa = Fm sin!t, Fb = Fm sin(!t � 2�=3), and Fc =
Fm sin(!t� 4�=3) versus !t on the lower left portion.

4. For fR = 3Fm, construct a circle of radius fR on the lower right portion.

wt = 0: 0.05: 3*pi; v=120*sin(wt); %Sinusoidal voltage
i = 100*sin(wt - pi/4); %Sinusoidal current
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FIGURE 1.5
Subplot demonstration.

p = v.*i; %Instantaneous power
subplot(2, 2, 1), plot(wt, v, wt, i); %Plot of v & i versus wt
title('Voltage & current'), xlabel('\omegat, radians');
subplot(2, 2, 2), plot(wt, p); % Instantaneous power vs. wt
title('Power'), xlabel(' \omegat, radians ')
Fm=3.0;
fa = Fm*sin(wt); % Three-phase mmf's fa, fb, fc
fb = Fm*sin(wt - 2*pi/3); fc = Fm*sin(wt - 4*pi/3);
subplot(2, 2, 3), plot(wt, fa, wt, fb, wt, fc)
title('3-phase mmf'), xlabel(' \omegat, radians ')
fR = 3/2*Fm;
subplot(2, 2, 4), plot(-fR*cos(wt), fR*sin(wt))
title('Rotating mmf'), subplot(111)

Example 1.16 results are shown in Figure 1.5.
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1.12 THREE-DIMENSIONAL PLOTS

MATLAB provides extensive facilities for visualization of three-dimensional data. The
most common are plots of curves in a three-dimensional space, mesh plots, surface
plots, and contour plots. The command plot3(x, y, z , ’style option’) produces a curve
in the three-dimensional space. The viewing angle may be specified by the command
view(azimuth, elevation). The arguments azimuth, and elevation specifies the horizon-
tal and vertical rotation in degrees, respectively. The title, xlabel, ylabel, etc., may be
used for three-dimensional plots. The mesh and surf commands have several optional
arguments and are used for plotting meshes and surfaces. The contour(z) command
creates a contour plot of matrix z, treating the values in z as heights above the plane.
The statement mesh(z) creates a three-dimensional plot of the elements in matrix z.
A mesh surface is defined by the z coordinates of points above a rectangular grid in
the x-y plane. The plot is formed by joining adjacent points with straight lines. mesh-
grid transforms the domain specified by vector x and y into arrays X and Y. For a
complete list and help on general purpose Graphic functions and three-dimensional
graphics, see help graphics and help plotxyz. Also type demo to open the MATLAB
Expo Menu Map and visit MATLAB. Select and observe the demos in the Visualiza-
tion section.

Following is a list of elementary 3-D plots and some specialized 3-D graphs.

plot3 Plot lines and points in 3-D space
mesh 3-D mesh surface
surf 3-D colored surface
fill3 Filled 3-D polygons
comet3 3-D comet-like trajectories
ezgraph3 General purpose surface plotter
ezmesh Easy to use 3-D mesh plotter
ezmeshc Easy to use combination mesh/contour plotter
ezplot3 Easy to use 3-D parametric curve plotter
ezsurf Easy to use 3-D colored surface plotter
ezsurfc Easy to use combination surf/contour plotter
meshc Combination mesh/contour plot
meshz 3-D mesh with curtain
scatter3 3-D scatter plot
stem3 3-D stem plot
surfc Combination surf/contour plot
trisurf Triangular surface plot
trimesh Triangular mesh plot
cylinder Generate cylinder
sphere Generate sphere

Example 1.17 ch1ex17.m

Few examples of 3-D plots and mesh plots are given in Figure 1.6.
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Plot of a parametric space curve 

x(t) = e−0.03t cos t,   y(t) =e−0.03t sin t,   z(t)=t

t= 0:0.1:16*pi;
x=exp(−0.03*t).*cos(t); 
y=exp(−0.03*t).*sin(t);
z=t;
plot3(x, y, z), axis off 

t = −4:0.3:4;                                  
[x,y] = meshgrid(t,t);                         
z = sin(x).*cos(y).*exp(−(x.^2+y.^2).^0.5); 
mesh(x,y,z), axis off 

Plot of function z=sinx cosy e−(x
2
+y

2
)
0.5

 
using mesh 

Plot of function z=−0.1/(x2+y2+1)
                                   using meshz 
x= −3:0.3:3; y=x;        
[x, y]=meshgrid(x,y);    
z=−0.1./(x.^2+y.^2+.1);
meshz(z) , axis off 
view(−35, 60)            
                         

Discrete plot of 

using stem3 
x=t,  y=t cost,  z=e0.1t 

t=0:.2:20;                  
x=t; y=t.*cos(t);           
z=exp(0.1*t);               
stem3(x,y,z), axis off                    
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Cylindrical surface created by 

using cylinder function 

p=3+sin t

t=0:pi/5:6*pi;             
p=3+sin(t);                
cylinder(p), axis off                   
                           

Plot of a unit sphere and a scaled sphere
using sphere function                    
[x,y,z]=sphere(24);                 
subplot(2,2,2), surf(x−2, y−2, z−1);
hold on                             
surf(2*x, 2*y,2*z);                 
axis off                            
                                    

Cartezian plot of Bessel function 

J
0
[x2+y2]1/2   −12<x<12,   −12<y<12 

[x,y]=meshgrid(−12:.7:12, −12:.7:12);
r=sqrt(x.2+y.2);z= bessel(0,r);
m=[−45 60]; mesh(z,m), axis off     

−2 0 2
−3

−2

−1

0

1

2

3Contour lines and directional vectors
using contour and quiver functions   
[x,y,z]=peaks(20);               
[nx, ny]=gradient(z,1,1);        
contour(x,y,z,10)
hold on                          
quiver(x,y,nx,ny)                

FIGURE 1.6
Graphs of Example 1.17.
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For more specialized 3-D graphs and color related functions see help specgraph.

1.13 HANDLE GRAPHICS

It is often desirable to be able to customize the graphical output. MATLAB allows
object-oriented programming, enabling the user to have complete control over the
details of a graph. MATLAB provides many low-level commands known as Handle
Graphics. These commands makes it possible to access individual objects and their
properties and change any property of an object without affecting other properties or
objects. Handle Graphics provides a graphical user interface (GUI) in which the user
interface includes push buttons and menus. These topics are not discussed here; like
MATLAB syntax, they are easy to follow, and we leave these topics for the interested
reader to explore.

1.14 LOOPS AND LOGICAL STATEMENTS

MATLAB provides loops and logical statements for programming, like for, while,
and if statements. The for statement instructs the computer to perform all subsequent
expressions up to the end statement for a specified number of counted times. The
expression may be a matrix. The following is an example of a nested loop.

for i = 1:n, for j = 1:n
expression

end, end

The while statement allows statements to be repeated an indefinite number of
times under the control of a logic statement. The if, else, and elseif statements allow
conditional execution of statements. MATLAB has six relational operators and four
logical operators, which are defined in the following table.

Relational Operator Logical Operator
== equal & logical AND
�= not equal j logical OR
< less than � logical complement
<= less than or equal to xor exclusive OR
> greater than
>= greater than or equal to

MATLAB is an interpreted language and macro operations such as matrices
multiplies faster than micro operations such as incrementing an index, and use of
loops are somewhat inefficient. Since variables in MATLAB are arrays and matrices,
try to use vector operations as much as possible instead of loops. The loops should
be used mainly for control operations. The use of loops are demonstrated in the next
four examples.
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Example 1.18

A rectangular signal can be represented as a series sum of harmonically related sine
or cosine signals. Consider the partial sum of the following periodic signals (Fourier
series).

x(t) =
4

�
[sin!0t+

1

3
sin3!0t+

1

5
sin 5!0t+ � � �]

=
4

�

1X
n=1

1

n
sinn!0t n is an odd integer

The following simple MATLAB statements uses a loop to generate this sum for any
given odd integer.

n = input('Enter an odd integer');
w_0t = 0:.01:2*pi;
x =0;
for k = 1:2:n;

x = x + 1/k*sin(k*w_0t);
end
x=4/pi*x;
plot(w_0t, x), xlabel('\omega_0t')
text(3.5,.7,['Sum of ', num2str((n+1)/2),' sine waves'])

The result for n = 101 is plotted as shown in Figure 1.7.
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FIGURE 1.7
Graph 0f Example 1.18.

Example 1.19

A network function known as transfer function is expressed by

F (s) =
ans

n + an�1s
n�1 + � � �+ a1s+ a0

bnsn + bn�1sn�1 + � � �+ b1s+ b0
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(a) write a MATLAB function named ’mybode’ to evaluate the magnitude and phase
angle of the above function for s = j! where 0 < ! <1.

(b) Write a script function that uses ’mybode’ to evaluate the magnitude and phase
angle of

F (s)
1000(s + 1)

s3 + 110s2 + 1000s

over a logarithmic range of 0:1 � ! � 1000.

The following function make use of two simple loops to sum up the numerator and
denominator terms and returns an array containing magnitudes and phase angles in
degree over the specified range.

% The function mybode returns the magnitude and phase
% angle of the frequency response transfer function.
% num and den are the numerator and denominator
% coefficients in descending order. w is the frequency
% array in rad/sec.
function[mag, phase] = mybode(num, den, w);
m=length(num); n=length(den);
N=num(m); D=den(n);
s=j*w;
for k=1:m-1

N=N+num(m-k)*s.^k;
end
for k=1:n-1

D=D+den(n-k)*s.^k;
end
H=N./D;
mag=abs(H);
phase=angle(H)*180/pi;

(b) The following script file uses ’mybode’ to evaluate and plot the magnitude and
phase angle of the function given (b) over the specified range of frequency.

num=[1000 1000], den=[1 110 1000 1];
w=logspace(-1, 3); % logarithmic range from 0.1 to 1000
[mag, phase]=mybode(num, den, w);
subplot(2,1,1), semilogx(w, mag), grid
xlabel('\omega'), ylabel('Magnitude')
subplot(2,1,2), semilogx(w, phase), grid
xlabel('\omega'), ylabel('\theta, degree')

The result is shown in Figure 1.8.

The MATLAB control system toolbox has a function called bode which obtains the
frequency response plots of a given transfer function. This function is used in Chapters
4 and 7.
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FIGURE 1.8
Magnitude and phase angle plots for Example 1.19.

Example 1.20

Another example of loops is in the numerical solution of differential equations. Euler’s
method is the simplest and the least accurate of all numerical methods. Consider the
following simple one-dimensional first-order system.

a1
dx

dt
+ a0x = c

rewriting in the form

dx

dt
=

c

a1
� a0
a1
x

If at t0 the value of x(t0) denoted by x0 is given,the subsequent values of x can be
determined by

xk+1 = xk +
dx

dt

����
xk

�t

By applying the above algorithm successively, we can find approximate values of x(t)
at enough points from an initial state (t0; x0) to a final state (tf ; xf ). Euler’s method
assumes that the derivative is constant over the entire interval �t. An improvement
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can be obtained by calculating the derivative at both the beginning and end of inter-
vals, and then using their average value. This algorithm known as the modified Euler’s
method is given by

xck+1 = xk +

0
BB@

dx
dt

���
xk

+ dx
dt

���
xp
k+1

2

1
CCA�t

Use the above algorithm to find the numerical solution of the following differential
equation, and plot the result up to a final time of t = 15 seconds in steps of 0.01
second.

4
dx(t)

dt
+ 2x(t) = 10 sin 8�t given; x0 = 1

we use the following statements

a1 = 4; a0 = 2;
x0 = 1; t0 = 0; % Initial state
Dt = 0.01; tf=15; % Step size and final time
t=[]; x=[]; % Initializing all the arrays
np = (tf -t0)/Dt;
t(1) = t0; x(1) = x0;
for k=1:np

c=10*sin(pi*t(k));
t(k+1)=t(k)+Dt;
Dx1= c/a1 - a0/a1*x(k); % Derivative at the beginning
x(k+1)=x(k)+Dx1*Dt; % Predicted value
Dx2=c/a1 - a0/a1*x(k+1); % Derivative at the end of interval
Dxavg=(Dx1+Dx2)/2; % Average value of the two derivatives
x(k+1)=x(k) + Dxavg*Dt; % Corrected value

end
plot(t, x), grid
xlabel('t, sec'), ylabel('x(t)')

The result is shown in Figure 1.9.

MATLAB provides several powerful functions for the numerical solution of dif-
ferential equations. Two of the functions employing the Runge-Kutta-Fehlberg meth-
ods are ode23 and ode45, based on the Fehlberg second- and third-order pair of for-
mulas for medium accuracy and forth- and fifth-order pair for higher accuracy. These
functions are described and utilized in Chapter 2.

Example 1.21

Consider the system of n equations in n variables

f1(x1; x2; � � � ; xn) = c1

f2(x1; x2; � � � ; xn) = c2

� � � � � � � � � � � � � � � � � � � � �
fn(x1; x2; � � � ; xn) = cn
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FIGURE 1.9
Numerical solution of Example 1.20.

The most widely used method for solving simultaneous nonlinear algebraic
equations is the Newton-Raphson method. Newton’s method is a successive approxi-
mation procedure based on an initial estimate of the unknown and the use of Taylor’s
series expansion and is given by

X(k+1) = X(k) +
h
J (k)

i�1
�C(k)

where J (k) is a matrix whose elements are the partial derivatives of F (k) and �C(k)

is

�C(k) = C � F (k)

The iteration procedure is initiated by assuming an approximate solution for
each of the independent variables (x(0)1 ; x

(0)
2 � � � ; x(0)n ). At the end of each iteration, the

calculated values of all variables are tested against the previous values. If all changes
in the variables are within the specified accuracy, a solution has converged, otherwise
another iteration must be performed.

Starting with the initial values, x1 = 1, x2 = 1, and x3 = 1, solve the following
system of equations by the Newton-Raphson method.

x21 � x22 + x23 = 11

x1x2 + x22 � 3x3 = 3

x1 � x1x3 + x2x3 = 6
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Taking partial derivatives of the above functions results in the Jacobian matrix

J =

2
4 2x1 �2x2 2x3

x2 x1 + 2x2 �3
1� x3 x3 �x1 + x2

3
5

The following statements solve the given system of equations by the Newton-Raphson
algorithm

Dx=[10;10;10]; %Change in variable is set to a high value
x=[1; 1; 1]; % Initial estimate
C=[11; 3; 6];
iter = 0; % Iteration counter
while max(abs(Dx))>=.0001 & iter<10; % Test for convergence
iter = iter + 1 % No. of iterations
F = [x(1)^2-x(2)^2+x(3)^2 % Functions

x(1)*x(2)+x(2)^2-3*x(3)
x(1)-x(1)*x(3)+x(2)*x(3)];

DC =C - F % Residuals
J = [2*x(1) -2*x(2) 2*x(3) % Jacobian matrix

x(2) x(1)+2*x(2) -3
1-x(3) x(3) -x(1)+x(2)]

Dx=J\DC %Change in variable
x=x+Dx % Successive solution
end

The program results for the first iteration are

DC = J =
10 2 -2 2
4 1 3 -3
5 0 1 0

Dx = x =
4.750 5.750
5.000 6.000
5.250 6.250

After six iterations, the solution converges to x1 = 2:0000, x2 = 3:0000, and x3 =
4:0000.

1.15 SIMULATION DIAGRAM

The differential equations of a lumped linear network can be written in the form

_x(t) = Ax(t) +Bu(t) (1.1)

y(t) = Cx(t) +Du(t)

This system of first-order differential equations is known as the state equation
of the system, and x is the state vector. One advantage of the state-space method is
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that the form lends itself easily to the digital and/or analog computer methods of so-
lution. Further, the state-space method can be easily extended to analysis of nonlinear
systems. State equations may be obtained from an nth-order differential equation or
directly from the system model by identifying appropriate state variables.

To illustrate how we select a set of state variables, consider an nth-order linear
plant model described by the differential equation

dny

dtn
+ an�1

dn�1y

dtn�1
+ : : : + a1

dy

dt
+ a0y = u(t) (1.2)

where y(t) is the plant output and u(t) is its input. A state model for this system is
not unique, but depends on the choice of a set of state variables. A useful set of state
variables, referred to as phase variables, is defined as

x1 = y; x2 = _y; x3 = �y; : : : ; xn = yn�1

We express _xk = xk+1 for k = 1; 2; : : : ; n� 1, and then solve for dny=dtn, and
replace y and its derivatives by the corresponding state variables to give

_x1 = x2
_x2 = x3
...
_xn�1 = xn
_xn = �a0x1 � a1x2 � : : :� an�1 xn + u(t)

(1.3)

or in matrix form2
6666664

_x1
_x2
...

_xn�1
_xn

3
7777775
=

2
6666664

0 1 0 : : : 0
0 0 1 : : : 0
...

...
...

. . .
...

0 0 0 : : : 1
�a0 �a1 �a2 : : : �an�1

3
7777775

2
6666664

x1
x2
...

xn�1
xn

3
7777775
+

2
6666664

0
0
...
0
1

3
7777775
u(t) (1.4)

and the output equation is

y =
�
1 0 0 : : : 0

�
x (1.5)

The M-file ode2phv.m is developed which converts an nth-order ordinary differential
equation to the state-space phase variable form. [A, B, C] = ode2phv(ai, k) returns
the matrices A, B, C, where ai is a row vector containing coefficients of the equation
in descending order, and k is the coefficient of the right-hand side.

Equation (1.3) indicates that state variables are determined by integrating the
corresponding state equation. A diagram known as the simulation diagram can be
constructed to model the given differential equations. The basic element of the simu-
lation diagram is the integrator. The first equation in (1.3) is

_x1 = x2
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Integrating, we have

x1 =

Z
x2 dx

The above integral is shown by the following time-domain symbol. The integrating
block is identified by symbol 1

s . Adding an integrator for the remaining state variables
and completing the last equation in (1.3) via a summing point and feedback paths, a
simulation diagram is obtained.

.........................................................................................

.......
...
..
..
..

.........................................................................................

.......
...
..
..
..

1
s

x2(t) x1(t)

1.16 INTRODUCTION TO SIMULINK

SIMULINK is an interactive environment for modeling, analyzing, and simulating a
wide variety of dynamic systems. SIMULINK provides a graphical user interface for
constructing block diagram models using “drag-and-drop” operations. A system is
configured in terms of block diagram representation from a library of standard com-
ponents. SIMULINK is very easy to learn. A system in block diagram representation
is built easily and the simulation results are displayed quickly.

Simulation algorithms and parameters can be changed in the middle of a simu-
lation with intuitive results, thus providing the user with a ready access learning tool
for simulating many of the operational problems found in the real world. SIMULINK
is particularly useful for studying the effects of nonlinearities on the behavior of the
system, and as such, it is also an ideal research tool. The key features of SIMULINK
are

� Interactive simulations with live display.

� A comprehensive block library for creating linear, nonlinear, discrete or hybrid
multi-input/output systems.

� Seven integration methods for fixed-step, variable-step, and stiff systems.

� Unlimited hierarchical model structure.

� Scalar and vector connections.

� Mask facility for creating custom blocks and block libraries.

SIMULINK provides an open architecture that allows you to extend the simulation
environment:
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� You can easily perform “what if” analyses by changing model parameters –
either interactively or in batch mode – while your simulations are running.

� Creating custom blocks and block libraries with your own icons and user inter-
faces from MATLAB, Fortran, or C code.

� You can generate C code from SIMULINK models for embedded applications
and for rapid prototyping of control systems.

� You can create hierarchical models by grouping blocks into subsystems. There
are no limits on the number of blocks or connections.

� SIMULINK provides immediate access to the mathematical, graphical, and pro-
gramming capabilities of MATLAB, you can analyze data, automate procedures,
and optimize parameters directly from SIMULINK.

� The advanced design and analysis capabilities of the toolboxes can be executed
from within a simulation using the mask facility in SIMULINK.

� The SIMULINK block library can be extended with special-purpose blocksets.
The DSP Blockset can be used for DSP algorithm development, while the
Fixed-Point Blockset extends SIMULINK for modeling and simulating digital
control systems and digital filters.

1.16.1 SIMULATION PARAMETERS AND SOLVER

You set the simulation parameters and select the solver by choosing Parameters from
the Simulation menu. SIMULINK displays the Simulation Parameters dialog box,
which uses three “pages” to manage simulation parameters. Solver, Workspace I/O,
and Diagnostics.

SOLVER PAGE

The Solver page appears when you first choose Parameters from the Simulation
menu or when you select the Solver tab. The Solver page allows you to:

� Set the start and stop times – You can change the start time and stop time for the
simulation by entering new values in the Start time and Stop time fields. The
default start time is 0.0 seconds and the default stop time is 10.0 seconds.

� Choose the solver and specify solver parameters – The default solver provide
accurate and efficient results for most problems. Some solvers may be more
efficient that others at solving a particular problem; you can choose between
variable-step and fixed-step solvers. Variable-step solvers can modify their step
sizes during the simulation. These are ode45, ode23, ode113, ode15s, ode23s,
and discrete. The default is ode45. For variable-step solvers, you can set the
maximum and suggested initial step size parameters. By default, these param-
eters are automatically determined, indicated by the value auto. For fixed-step
solvers, you can choose ode5, ode4, ode3, ode2, ode1, and discrete.
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� Output Options – The Output options area of the dialog box enables you to
control how much output the simulation generates. You can choose from three
popup options. These are: Refine output, Produce additional output, and Pro-
duce specified output only.

WORKSPACE I/O PAGE

The Workspace I/O page manages the input from and the output to the MATLAB
workspace, and allows:

� Loading input from the workspace – Input can be specified either as MATLAB
command or as a matrix for the Import blocks.

� Saving the output to the workspace –You can specify return variables by se-
lecting the Time, State, and/or Output check boxes in the Save to workspace
area.

DIAGNOSTICS PAGE

The Diagnostics page allows you to select the level of warning messages displayed
during a simulation.

1.16.2 THE SIMULATION PARAMETERS DIALOG BOX

Table below summarizes the actions performed by the dialog box buttons, which ap-
pear on the bottom of each dialog box page.

Button Action
Apply Applies the current parameter values and keeps the dialog box

open. During a simulation, the parameter values are applied
immediately.

Revert Changes the parameter values back to the values they had
when the Dialog box was most recently opened and applies
the parameters.

Help Displays help text for the dialog box page.
Close Applies the parameter values and closes the dialog box. Dur-

ing a simulation, the parameter values are applied immedi-
ately.

To stop a simulation, choose Stop from the Simulation menu. The keyboard shortcut
for stopping a simulation is Ctrl-T. You can suspend a running simulation by choosing
Pause from the Simulation menu. When you select Pause, the menu item changes to
Continue. You proceed with a suspended simulation by choosing Continue.
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1.16.3 BLOCK DIAGRAM CONSTRUCTION

At the MATLAB prompt, type SIMULINK. The SIMULINK BLOCK LIBRARY, con-
taining seven icons, and five pull-down menu heads, appears. Each icon contains var-
ious components in the titled category. To see the content of each category, double
click on its icon. The easy-to-use pull-down menus allow you to create a SIMULINK
block diagram, or open an existing file, perform the simulation, and make any modi-
fications. Basically, one has to specify the model of the system (state space, discrete,
transfer functions, nonlinear ode’s, etc), the input (source) to the system, and where
the output (sink) of the simulation of the system will go. Generally when building a
model, design it first on the paper, then build it using the computer. When you start
putting the blocks together into a model, add the blocks to the model window before
adding the lines that connect them. This way, you can reduce how often you need to
open block libraries. An introduction to SIMULINK is presented by constructing the
SIMULINK diagram for the following examples.

MODELING EQUATIONS

Here are some examples that may improve your understanding of how to model equa-
tions.

Example 1.22

Model the equation that converts Celsius temperature to Fahrenheit. Obtain a display
of Fahrenheit-Celsius temperature graph over a range of 0 to 100ÆC.

TF =
9

5
TC + 32 (1.6)

First, consider the blocks needed to build the model. These are:

� A ramp block to input the temperature signal, from the source library.

� A constant block, to define the constant of 32, also from the source library.

� A gain block, to multiply the input signal by 9=5, from the Linear library.

� A sum block, to add the two quantities, also from the Linear library.

� A scope block to display the output, from the sink library.

To create a SIMULINK block diagram presentation select new... from the File menu.
This provides an untitled blank window for designing and simulating a dynamic sys-
tem. Copy the above blocks from the block libraries into the new window by de-
pressing the mouse button and dragging. Assign the parameter values to the Gain and
Constant blocks by opening (double clicking on) each block and entering the appro-
priate value. Then click on the close button to apply the value and close the dialog
box. The next step is to connect these icons together by drawing lines connecting the
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FIGURE 1.10
Simulink diagram for the system of Example 1.22.

icons using the left mouse button (hold the button down and drag the mouse to draw
a line). You should now have the SIMULINK block diagram as shown in Figure 1.10.

The Ramp block inputs Celsius temperature. Open this block, set the Slope to 1,
Start time to 0, and the Initial output to 0. The Gain block multiplies that temperature
by the constant 9/5. The sum block adds the value 32 to the result and outputs the
Fahrenheit temperature. Pull down the Simulation dialog box and select Parameters.
Set the Start time to zero and the Stop Time to 100. Pull down the File menu and
use Save to save the model under simexa22 Start the simulation. Double click on the
Scope, click on the Auto Scale, the result is displayed as shown in Figure 1.11.
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FIGURE 1.11
Fahrenheit-Celsius temperature graph for Example 1.22.

Example 1.23

Construct a simulation diagram for the state equation described by

dx1
dt

= x2

dx2
dt

=
1

M
[f(t)�Bx2 � kx1]

where M = 1 kg, B = 5 N/m/sec, K = 25 N/m, and f(t) = 25u(t).
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The simulation diagram is drawn from the above equations by inspection and is shown
in Figure 1.12.
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FIGURE 1.12
Simulink diagram for the system of Example 1.23.

To create a SIMULINK block diagram presentation select new... from the File
menu. This provides an untitled blank window for designing and simulating a dynamic
system. You can copy blocks from within any of the seven block libraries or other
previously opened windows into the new window by depressing the mouse button and
dragging. Open the Source Library and drag the Step Input block to your window.
Double click on Step Input to open its dialog box. Set the step time to 0, and set the
Initial Value to 0 and the Final Value to 25 to represent the step input. Open the Linear
Library and drag the Sum block to the right of the Step Input block. Open the Sum
dialog box and enter + - - under List of Signs. Using the left mouse button, click and
drag from the Step output port to the Summing block input port to connect them. Drag
a copy of the Integrator block from the Linear Library and connect it to the output
port of the Sum block. Click on the Integrator block once to highlight it. Use the Edit
command from the menu bar to copy and paste a second Integrator. Next drag a copy
of the Gain block from the Linear Library. Highlight the Gain block, and from the
pull-down Options menu, click on the Flip Horizontal to rotate the Gain block by
180Æ. Double click on Gain block to open its dialog box and set the gain to 5. Make a
copy of this block and set its gain to 25. Connect the output ports of the Gain blocks
to the Sum block and their input ports to the locations shown in Figure 1.12. Finally,
get two Auto-Scale Graphs from the Sink Library, and connect them to the output of
each Integrator. Before starting simulation, you must set the simulation parameters.
Pull down the Simulation dialog box and select Parameters. Set the Start Time to
zero, the Stop Time to 3, and for a more accurate integration, set the Maximum Step
Size to 0.1. Leave the other parameters at their default values. Press OK to close the
dialog box.

If you don’t like some aspect of the diagram, you can change it in a variety of
ways. You can move any of the icons by clicking on its center and dragging. You
can move any of the lines by clicking on one of its corners and dragging. You can
change the size and the shape of any of the icons by clicking and dragging on its
corners. You can remove any line or icon by clicking on it to select it and using the
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cut command from the edit menu. You should now have exactly the same system as
shown in Figure 1.12. Pull down the File menu and use Save as to save the model
under a file name simexa23. Start the simulation. SIMULINK will create the Figure
windows and display the system responses. To see the second Figure window, click
and drag the first one to a new location. The simulation results are shown in Figures
1.13 and 1.14.

SIMULINK enables you to construct and simulate many complex systems, such
as control systems modeled by block diagram with transfer functions including the
effect of nonlinearities. In addition, SIMULINK provides a number of built-in state
variable models and subsystems that can be utilized easily.
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FIGURE 1.13
Displacement response of the system described in Example 1.23.
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FIGURE 1.14
Velocity response of the system described in Example 1.23.
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FIGURE 1.15
Simulation diagram for the system of Example 1.24.

Example 1.24

Consider the system defined by

2
d3y

dt3
+ 4

d2y

dt2
+ 8

dy

dt
+ 10y = 10u(t)

We have a third-order system; thus there are three state variables. Let us choose the
state variables as

x1 = y

x2 = _y

x3 = �y

Then we obtain

_x1 = x2

_x2 = x3

_x3 = �5x1 � 4x2 � 2x3 + 5u(t)

The last of these three equations was obtained by solving the original differential
equation for the highest derivative term

���
y and then substituting y = x1, _y = x2, and

�y = x3 into the resulting equation. Using matrix notation, the state equation is

2
4 _x1

_x2
_x3

3
5 =

2
4 0 1 0

0 0 1
�5 �4 �2

3
5
2
4 x1
x2
x3

3
5+

2
4 0

0
5

3
5u(t)

and the output equation is given by

y =
�
1 0 0

�
x
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The simulation diagram is obtained from the system differential equations and is given
in Figure 1.15.

A SIMULINK Block diagram is constructed and saved as simexa24. The simu-
lation response is shown in Figure 1.16.
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FIGURE 1.16
Simulation result for the system in Example 1.24.

Example 1.25

Use the state-space model to simulate the state and output equations described in Ex-
ample 1.24.

The State-Space model provides a dialog box where the A, B, C , and D matri-
ces can be entered in MATLAB matrix notation, or by variables defined in Workspace.
A SIMULINK diagram using the State-Space model is constructed as shown in Figure
1.17, and saved as simexa25.
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FIGURE 1.17
State-space model for system in Example 1.25.

Note that in this example, the output is given by y = x1, and we define C as
C = [1 0 0]. If it is desired to access all the states, then we can define C as an
identity matrix, in this case a third order, i.e., C = eye(3), and D as D = zeros(3; 1).
The output is a vector of state variables. A DeMux block may be added to produce
individual states for graphing separately.
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1.16.4 USING THE TO WORKSPACE BLOCK

The To Workspace block can be used to return output trajectories to the MATLAB
Workspace. Example 1.26 illustrates this use.

Example 1.26

Obtain the step response of the following transfer function, and send the result to the
MATLAB Workspace.

C(s)

R(s)
=

25

s2 + 2s+ 25

where r(t) is a unit step function. The SIMULINK block diagram is constructed and
saved in a file named simexa26 as shown in Figure 1.18.
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FIGURE 1.18
Simulink model for system in Example 1.26.

The To Workspace block can accept a vector input, with each input element’s
trajectories stored as a column vector in the resulting workspace variable. To specify
the variables open the To Workspace block and for the variable name enter c. The
time vector is stored by feeding a Clock block into To Workspace block. For this block
variable name specify t. The vectors c and t are returned to MATLAB Workspace upon
simulation.

1.16.5 LINEAR STATE-SPACE
MODEL FROM SIMULINK DIAGRAM

SIMULINK provides the linmod, and dlinmod functions to extract linear models from
the block diagram model in the form of the state-space matrices A, B, C, and D. State-
space matrices describe the linear input-output relationship as

_x(t) = Ax(t) +Bu(t) (1.7)

y(t) = Cx(t) +Du(t) (1.8)

The following Example illustrates the use of linmod function. The input and
outputs of the SIMULINK diagram must be defined using Inport and Outport blocks
in place of the Source and Sink blocks.
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Example 1.27

Obtain the state-space model for the system represented by the block diagram shown
in Figure 1.19. The model is saved with a filename simexa27. Run the simulation and
to extract the linear model of this SIMULINK system, in the Command Window, enter
the command
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FIGURE 1.19
Simulink model for system in Example 1.27.

[A,B,C,D] = linmod('simexa27')

The result is

A = B =
0 0 0 20 0
-1 -1 0 0 1
-1 1 -10 -56 1
0 0 1 0 0

C =

1 0 0 0
D =

0

In order to obtains the transfer function of the system from the state-space model, we
use the command

[num, den]=ss2tf(A, B, C, D)

the result is

num =
0.0000 0.0000 0.0000 20.0000 40.0000

den =
1.0000 11.0000 66.0000 76.0000 40.0000
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Thus, the transfer function model is

T (s) =
20s+ 40

s4 + 11s3 + 66s2 + 76s+ 40

Once the data is in the state-space form, or converted to a transfer function model,
you can apply functions in Control System Toolbox for further analysis:

� Bode phase and magnitude frequency plot:

bode(A, B, C, D) or bode(num, den)

� Linearized time response:

step(A, B, C, D) or step(num, den)
lsim(A, B, C, D) or lsim(num, den)
impulse(A, B, C, D) or impulse(num, den)

1.16.6 SUBSYSTEMS AND MASKING

SIMULINK subsystems, provide a capability within SIMULINK similar to subpro-
grams in traditional programming languages.

Masking is a powerful SIMULINK feature that enables you to customize the
dialog box and icon for a block or subsystem. With masking, you can simplify the use
of your model by replacing many dialog boxes in a subsystem with a single one.

Example 1.28

To encapsulate a portion of an existing SIMULINK model into a subsystem, consider
the SIMULINK model of Example 1.24 shown in Figure 1.20, and proceed as follows:

1. Select all the blocks and signal lines to be included in the subsystem with the
bounding box as shown.

2. Choose Edit and select Create Subsystem from the model window menu bar.
SIMULINK will replace the select blocks with a subsystem block that has an
input port for each signal entering the new subsystem and an output port for
each signal leaving the new subsystem. SIMULINK will assign default names
to the input and output ports.

To mask a block, select the block, then choose Create Mask from the Edit menu.
The Mask Editor appears. The Mask Editor consists of three pages, each handling a
different aspect of the mask.
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FIGURE 1.20
Simulation diagram for the system of Example 1.24.
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FIGURE 1.21
Simulation diagram for the system of Example 1.24.

� The Initialization page enables you to define and describe mask dialog box pa-
rameter prompts, name the variables associated with the parameters, and spec-
ify initialization commands.

� The Icon page enables you to define the block icon.

� The Documentation page enables you to define the mask type, and specify the
block description and the block help.

In this example for icon the system transfer function is entered with command

dpoly([10], [2 4 8 10])

A short description of the system and relevant help topics can be entered in the Doc-
umentation page. The subsystem block is saved in a file named simexa29.



CHAPTER

2
MATHEMATICAL

MODELS OF
SYSTEMS

2.1 Differential Equations of Physical Systems

The dynamic performance of physical systems is obtained by utilizing the physical
laws of mechanical, electrical, fluid and thermodynamic systems. We generally model
physical systems with linear differential equations with constant coefficients when
possible. Other models can be derived from more general differential equations.

2.2 Numerical Solution

Analytical solutions of linear time-invariant equations are obtained through the Laplace
transform and its inversion. There are other techniques which use the state transition
matrix �(t) to provide a solution. These analytical methods are normally restricted
to linear differential equations with constant coefficients. Numerical techniques solve
differential equations directly in the time domain; they apply not only to linear time-
invariant but also to nonlinear and time varying differential equations. The value of the
function obtained at any step is an approximation of the value which would have been
obtained analytically, whereas the analytical solution is exact. However, an analytical
solution may be difficult, time consuming or even impossible to find.

MATLAB provides two functions for numerical solutions of differential equa-
tions employing the Runge-Kutta method. These are ode23 and ode45, based on the
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Fehlberg second and third order pair of formulas for medium accuracy and fourth and
fifth order pair for high accuracy. The nth-order differential equation must be trans-
formed into n first order differential equations and must be placed in an M-file that
returns the state derivatives of the equations. The following examples demonstrate the
use of these functions.

Example 2.1

Consider the simple mechanical system of Figure 2.1. Three forces influence the mo-
tion of the mass, namely, the applied force, the frictional force, and the spring force.
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FIGURE 2.1
Mechanical translational system.

Applying Newton’s law of motion, the force equation of the system is

M
d2x

dt2
+B

dx

dt
+Kx = f(t)

Let x1 = x and x2 = dx
dt , then

dx1
dt

= x2

dx2
dt

=
1

M
[f(t)�Bx2 �Kx1]

With the system initially at rest, a force of 25 Newton is applied at time t = 0. Assume
that the mass M = 1 Kg, frictional coefficient B = 5 N/m/sec., and the spring
constant K = 25 N/m. The above equations are defined in an M-file mechsys.m as
follows:

function xdot = mechsys(t,x);% returns the state derivatives
F = 25; % Step input
M =1; B = 5; K = 25;
xdot = [x(2) ; 1/M*( F - B*x(2) - K*x(1) ) ];

The following M-file, ch2ex01.m uses ode23 to simulate the system over an
interval of 0 to 3 sec., with zero initial conditions.
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FIGURE 2.2
Response of the mechanical system of Example 2.1.

tspan = [0, 3] ; % time interval
x0 = [0, 0]; % initial conditions
[t,x] = ode23('mechsys', tspan, x0);
subplot(2,1,1),plot(t,x)
title('Time response of mechanical translational system')
xlabel('Time - sec.')
text(2,1.2,'displacement')
text(2,.2,'velocity')

d= x(:,1); v = x(:,2);
subplot(2,1,2), plot(d, v)
title('velocity versus displacement ')
xlabel('displacement')
ylabel('velocity')
subplot(111)

Results of the simulation are shown in Figure 2.2.
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Example 2.2

The circuit elements in Figure 2.3 are R = 1:4
, L = 2H, and C = 0:32F, the initial
inductor current is zero, and the initial capacitor voltage is .5 volts. A step voltage of
1 volt is applied at time t = 0. Determine i(t) and v(t) over the range 0 < t < 15
sec. Also, obtain a plot of current versus capacitor voltage.
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FIGURE 2.3
RLC circuit for time-domain solution example.

Applying KVL

Ri+ L
di

dt
+ vc = Vs

and

i = C
dvc
dt

Let

x1 = vc

and
x2 = i

then

_x1 =
1

C
x2

and

_x2 =
1

L
(Vs � x1 �Rx2)

The above equations are defined in an M-file electsys.m as follows:

function xdot = electsys(t,x);
% returns the state derivatives

V = 1; % Step input
R =1.4; L = 2; C = 0.32;
xdot = [x(2)/C ; 1/L*( V - x(1) - R*x(2) ) ];
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FIGURE 2.4
Response of the series RLC circuit of Example 2.2.

The following M-file, ch2ex02.m, uses ode23 to simulate the system over an interval
of 0 to 15 sec.

x0 = [0.5, 0]; % initial conditions
tspan=[0, 15]; % time interval
[t,x] = ode23('electsys',tspan, x0);
subplot(2, 1, 1),plot(t,x)
title('Time response of an RLC series circuit')
xlabel('Time - sec.')
text(8,1.15, 'Capacitor voltage')
text(8, .1, 'Current')
vc= x(:,1); i = x(:,2);
subplot(2, 1, 2),plot(vc, i)
title('Current versus capacitor voltage ')
xlabel('Capacitor voltage')
ylabel('Current'), subplot(111)

Results of the simulation are shown in Figure 2.4.
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2.3 Nonlinear Systems

A great majority of physical systems are linear within some range of the variables.
However, all systems ultimately become nonlinear as the ranges are increased without
limit. For the nonlinear systems, the principle of superposition does not apply. ode23
and ode45 simplify the task of solving a set of nonlinear differential equations as
demonstrated in Example 2.3.

Example 2.3

Consider the simple pendulum illustrated in Figure 2.5 where a weight ofW = mg kg
is hung from a support by a weightless rod of length L meters. While usually approx-
imated by a linear differential equation, the system really is nonlinear and includes
viscous damping with a damping coefficient of B kg/m/sec.
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FIGURE 2.5
Pendulum oscillator.

If � in radians is the angle of deflection of the rod, the velocity of the weight
at the end will be L _� and the tangential force acting to increase the angle � can be
written:

FT = �W sin � �BL _�

From Newton’s law

FT = mL��

Combining the two equations for the force, we get:

mL�� +BL _� +W sin � = 0

Let x1 = � and x2 = _� (angular velocity), then

_x1 = x2

_x2 = �B
m
x2 � W

mL
sin x1

The above equations are defined in an M-file pendulum.m as follows:
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FIGURE 2.6
Response of the pendulum described in Example 2.3.

function xdot = pendulum(t,x);%returns the state derivatives
W = 2; L = .6; B = 0.02; g = 9.81; m = W/g;
xdot = [x(2) ; -B/m*x(2)-W/(m*L)*sin(x(1)) ];

The following M-file, ch2ex03.m, uses ode23 to simulate the system over an
interval of 0 to 5 sec.

tspan = [0, 5]; % time interval
x0 = [1, 0]; % initial conditions
[t,x] = ode23('pendulum', tspan, x0);
subplot(2,1,1),plot(t,x)
title('Time response of pendulum on rigid rod')
xlabel('Time - sec.')
text(3.2,3.1,'Velocity'), text(3.2,1.2,'Angle-Rad.')
th= x(:,1); w = x(:,2);
subplot(2,1,2),plot(th, w)
title('Phase plane plot of pendulum')
xlabel('Position - Rad.'), ylabel('Angular velocity')

Results of the simulation are shown in Figure 2.6.
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2.4 Linearization

Nonlinear systems are often linearized assuming small signal conditions. The nonlin-
ear differential equation describing the motion of the pendulum in Example 2.3 can be
linearized if the initial angle of deflection is small. When � = �0+��, the pendulum
equation can be written as

mL(�� +���) +BL( _� +� _�) +W sin(� +��) = 0 (2.1)

For small �� assuming sin �� ' 0 , cos �� ' 1 and expanding the sine term
yields the following linear differential equation.

mL��� +BL� _� +W�� = 0 (2.2)

It is left as an exercise to show that the above linearized equation will yield
approximately the same response as long as �� is small.

2.5 Transfer Function

The transfer function of a linear, time-invariant, differential equation system is defined
as the ratio of the Laplace transform of the output variable to the Laplace transform of
the input variable, with all initial conditions assumed to be zero. Although the trans-
fer function can be used only for linear systems, it yields more intuitive information
than the differential equation. The characteristic equation is obtained by setting the
denominator polynomials of the transfer function to zero. The roots of the denomi-
nator are the system poles, and the roots of the numerator are the system zeros. The
system transfer function can then be specified to within a constant by specifying the
system poles and zeros. The constant, usually denoted by K , is the system gain fac-
tor. The transfer function model enables us to change system parameters and rapidly
sense the effect of these changes on the system response. The transfer function is also
useful in modeling the interconnection of subsystems by forming a block diagram
representation. The time response of a system is obtained by the inverse transform of
the s-domain response. This usually requires expansion of the rational function using
partial fractions.

In this section, several examples are presented to demonstrate the use of MAT-
LAB in finding the roots of the characteristic equation, poles and zeros of a transfer
function, partial fraction expansion, and transformation of poles and zeros to transfer
function.
The Control System Toolbox function sys = tf(num, den) creates a continuous-time
transfer function. The output sys is a tf object. For SISO models, num and den are
row vectors listing the numerator and denominator coefficients in descending powers
of s. For example, the commands

num=[1 4]; den=[1 2 10];
sys=tf(num, den)

results in
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Transfer function:
s + 4

--------------
s^2 + 2 s + 10

2.5.1 Polynomial Roots and Characteristic Polynomial

If p is a row vector containing the coefficients of a polynomial, roots(p) returns a
column vector whose elements are the roots of the polynomial. If r is a column vector
containing the roots of a polynomial, poly(r) returns a row vector whose elements are
the coefficients of the polynomial.

Example 2.4

Find the roots of the following polynomial.

s6 + 9s5 + 31:25s4 + 61:25s3 + 67:75s2 + 14:75s + 15

The polynomial coefficients are entered in a row vector in descending powers.
The roots are found using roots.

p = [ 1 9 31.25 61.25 67.75 14.75 15 ]
r = roots(p)

The polynomial roots are obtained in column vector

r =
-4.0000
-3.0000
-1.0000 + 2.0000i
-1.0000 - 2.0000i
0.0000 + 0.5000i
0.0000 - 0.5000i

Example 2.5

The roots of a polynomial are �1, �2, �3� j4. Determine the polynomial equation.
In order to enter a complex number, it is first necessary to generate a complex

unit. The roots are then entered in a column vector. The polynomial equation is ob-
tained using poly as follows:

i = sqrt(-1)
r = [-1 -2 -3+4*i -3-4*i ]
p = poly(r)

The coefficients of the polynomial equation are obtained in a row vector.

p =
1 9 45 87 50

Therefore, the polynomial equation is

s4 + 9s3 + 45s2 + 87s+ 50 = 0
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Example 2.6

Determine the roots of the characteristic equation of the following matrix.

A =

2
4 0 1 �1
�6 �11 6
�6 �11 5

3
5

The characteristic equation of the matrix is found by poly, and the roots of this
equation are found by roots.

A = [ 0 1 -1; -6 -11 6; -6 -11 5];
p = poly(A)
r = roots(p)

The result is as follows:

p =
1.0000 6.0000 11.0000 6.0000

r = -3.0000
-2.0000
-1.0000

2.5.2 Poles and Zeros of a Transfer Function

tf2zp finds the zeros, poles and gains of a transfer function.

Example 2.7

Find the poles and zeros of the following transfer function:

H(s) =
s3 + 11s2 + 30s

s4 + 9s3 + 45s2 + 87s+ 50

num = [ 1 11 30 0];
den = [ 1 9 45 87 50];
[z,p,k] = tf2zp(num,den)

The zeros, poles and gains are:

z =
-6.0000
-5.0000
0.0000
inf

p =
-3.0000 +4.0000i
-3.0000 -4.0000i
-2.0000
-1.0000

k =
1
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Therefore

H(s) =
s(s+ 5)(s+ 6)

(s+ 1)(s+ 2)(s+ 3 + j4)(s + 3� j4)

zp2tf forms transfer function polynomials from the zeros, poles and gains of
systems.

Example 2.8

A system has zeros at�6,�5, 0, poles at�3�j4 ,�2,�1, and a gain of 1. Determine
the system transfer function.

z = [-6; -5; 0]; k=1;
i = sqrt(-1);
p = [-3+4*i; -3-4*i; -2; -1];
[num, den] = zp2tf(z,p,k)

The above program results in

num =
1 11 30 0

den =
1 9 45 87 50

which yields the following transfer function

H(s) =
s3 + 11s2 + 30s

s4 + 9s3 + 45s2 + 87s+ 50

2.5.3 Partial-Fraction Expansion

[r,p,k] = residue[b,a] finds the residues, poles, and direct terms of a partial fraction
expansion of the ratio of two polynomials

P (s)

Q(s)
=
bms

m + bm�1s
m�1 + � � � + b1s+ b0

ansn + an�1sn�1 + � � �+ a1s+ a0
(2.3)

Vectors b and a specify the coefficients of the polynomials in descending powers of
s. The residues are returned in column vector r, the pole locations in column vector
p, and the direct terms in row vector k.

Example 2.9

Determine the partial fraction expansion for

F (s) =
2s3 + 9s+ 1

s3 + s2 + 4s+ 4
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num = [ 2 0 9 1];
den = [ 1 1 4 4];
[res, poles ,k] = residue(num, den)

The result is as follows

res =
0.0000 -0.2500i
0.0000 +0.2500i

-2.0000
poles =

0.0000 +2.0000i
0.0000 -2.0000i

-1.0000
K =

2.0000

Therefore the partial fraction expansion is

2 +
�2
s+ 1

+
j0:25

s+ j2
+
�j0:25
s� j2

= 2 +
�2
s+ 1

+
1

s2 + 4

[num, den] = residue(res, poles, K) converts the partial fraction expansion back to
the polynomial P (s)=Q(s).



CHAPTER

3
STATE-SPACE

REPRESENTATION

The differential equations of a lumped linear network can be written in the form

_x(t) = Ax(t) +Bu(t) (3.1)

This system of first-order differential equations is known as the state equation
of the system and x is the state vector. One advantage of the state-space method is
that the form lends itself easily to the digital and/or analog computer methods of so-
lution. Further, the state-space method can be easily extended to analysis of nonlinear
systems. State equations may be obtained from an nth-order differential equation or
directly from the system model by identifying appropriate state variables.

3.1 State-Variable Modeling

To illustrate how we select a set of state variables, consider an nth-order linear plant
model described by the differential equation

dny

dtn
+ an�1

dn�1y

dtn�1
+ : : : + a1

dy

dt
+ a0y = u(t) (3.2)

where y(t) is the plant output and u(t) is its input. A state model for this system is
not unique but depends on the choice of a set of state variables. A useful set of state
variables, referred to as phase variables, is defined as

x1 = y; x2 = _y; x3 = �y; : : : ; xn = yn�1

63
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We express _xk = xk+1 for k = 1; 2; : : : ; n� 1, and then solve for dny=dtn and
replace y and its derivatives by the corresponding state variables to give

_x1 = x2
_x2 = x3
...
_xn�1 = xn
_xn = �a0x1 � a1x2 � : : :� an�1 xn + u(t)

(3.3)

or in matrix form2
6666664

_x1
_x2
...

_xn�1
_xn

3
7777775
=

2
6666664

0 1 0 : : : 0
0 0 1 : : : 0
...
0 0 0 : : : 1

�a0 �a1 �a2 : : : �an�1

3
7777775

2
6666664

x1
x2
...

xn�1
xn

3
7777775
+

2
6666664

0
0
...
0
1

3
7777775
u(t)

(3.4)
and the output equation is

y =
�
1 0 0 : : : 0

�
x (3.5)

Example 3.1

Obtain the state equation in phase variable form for the following differential equa-
tion.

2
d3y

dt3
+ 4

d2y

dt2
+ 6

dy

dt
+ 8y = 10u(t)

The M-file ode2phv.m is developed which converts an nth-order ordinary differential
equation to the state-space phase variable form. [A,B,C] = ode2phv(ai,k) returns the
matrices A,B,C, where ai is a row vector containing coefficients of the equation in
descending order and k is the coefficient of the right-hand side.

ai = [ 2 4 6 8];
k = 10;
[A,B,C] = ode2phv(ai,k)

produces the following phase variable state representation

A = B = C =
0 1 0 0 1 0 0
0 0 1 0

-4 -3 -2 5

3.2 Equations of Electrical Networks

The state variables are directly related to the energy-storage elements of a system.
It would seem, therefore, that the number of independent initial conditions is equal
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to the number of energy-storing elements. This is true provided that there is no loop
containing only capacitors and voltage sources and there is no cut set containing only
inductive and current sources. In general, if there are nC loops and nL cut sets, the
number of state variables is

n = eL + eC � nC � nL (3.6)

where
eL = number of inductors
eC = number of capacitors
nC = number of all capacitive and voltage source loops
nL = number of all inductive and current source cut sets

Example 3.2

Write the state equation for the network shown in Figure 3.1.
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FIGURE 3.1
Circuit of Example 3.2.

Define the state variables as current through the inductors and the voltage across
the capacitors. Write node equations containing capacitors and a loop equation con-
taining an inductor. The state variables are vc1, vc2 and iL. Node equations are

0:25
dvc1
dt

+ iL � iR = 0

where

iR =
vi � vc1

4

0:5
dvc2
dt

� iL +
vc2
1
� is = 0

and the loop equation is

2
diL
dt

+ vc2 � vc1 = 0

or 2
4 _vc1

_vc2
_iL

3
5 =

2
4 �1 0 �4

0 �2 2
0:5 �0:5 0

3
5
2
4 vc1
vc2
iL

3
5+

2
4 1 0

0 2
0 0

3
5 � vi

is

�
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3.3 Transfer Function to State-Space Conversion

The Control System Toolbox contains a set of functions for model conversion. [A,B,C,D]
= tf2ss(num,den) converts the system in transfer function form to state-space form.

Example 3.3

Find the state-space representation of the following transfer function.

num = [ 1 7 2]; den = [ 1 9 26 24 ];
[A, B, C, D] = tf2ss(num. den)

results in the following matrices

A = B = C = D =
-9 -26 -24 1 1 7 2 0
1 0 0 0
0 1 0 0

3.4 State-Space to Transfer Function Conversion

Given the state and output equations

_x = Ax+Bu (3.7)

y = Cx+Du (3.8)

taking the Laplace transform and rearranging

Y(s) = C(sI�A)�1BU(s) +DU(s)

or

G(s) =
Y(s)

U(s)
= C(sI�A)�1B+D (3.9)

[num, den] = ss2tf(A,B,C,D,i) converts the state equation to a transfer function for
the ith input.

Example 3.4

A system is described by the following state-space equations2
4 _x1

_x2
_x3

3
5 =

2
4 0 1 0

0 1 1
�1 �2 �3

3
5
2
4 x1
x2
x3

3
5+

2
4 10

0
0

3
5 u

y =
�
1 0 0

�
x

Find the transfer function, G(s) = Y (s)=X(s)
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A = [0 1 0; 0 0 1; -1 -2 -3]; B = [10; 0; 0];
C = [1 0 0]; D = [0];
[num,den] = ss2tf(A,B,C,D,1)

results in the following coefficients

num =
0.0000 10.0000 30.0000 20.0000

den =
1.0000 3.0000 2.0000 1.0000

Therefore, the transfer function is

G(s) =
10(s2 + 3s+ 2)

s3 + 3s2 + 2s+ 1

Also, [z,p ] = ss2tf(A,B,C,D,1) converts the state equation to transfer function in
factored form.

3.5 Similarity Transformation

3.5.1 Diagonalization of the A Matrix

One of the reasons for diagonalizing the A matrix, assuming we have distinct eigen-
values, is that they are all located on the main diagonal. It follows that the state tran-
sition matrix also is diagonal with elements e�1t ,e�2t, : : :, e�nt.

Given the linear system _x = Ax+Bu(t), where A has distinct eigenvalues
�1; �2; : : : ; �n it is desired to find a nonsingular matrix P such that the transformation
matrix P

x(t) = Py(t) (3.10)

transforms the above state equation into the canonical form

_y = ay + bu(t) (3.11)

with a given by the diagonal matrix

a = P�1AP and b = P�1B

In general, there are several methods of finding P. P can be formed by the use of the
eigenvectors of A.

Example 3.5

Given the system represented in the state space by the following equation

2
4 _x1

_x2
_x3

3
5 =

2
4 0 1 �1
�6 �11 6
�6 �11 5

3
5
2
4 x1
x2
x3

3
5+

2
4 0

0
1

3
5 u
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y =
�
1 0 0

�
x

Find the transformation matrix P that transforms the above state equation into the
canonical (diagonal) form.

A = [0 1 -1; -6 -11 6; -6 -11 5]; B = [0; 0; 1];
[P,L] = eig(A); % L is a diagonal matrix of eigenvalues

% P is a modal matrix whose columns are
% the corresponding eigenvectors

P
a = inv(P)*A*P % Diagonalization of the A matrix
b = inv(P)*B

The result is

P =
-0.7071 0.2182 -0.0921
-0.0000 0.4364 -0.5523
-0.7071 0.8729 -0.8285

a =
-1.0000 -0.0000 0.0000
0.0000 -2.0000 0.0000
0.0000 -0.0000 -3.0000

b =
-2.8284
-13.7477
10.8628

3.5.2 Transformation to Phase-variable

In the state equation of a linear time invariant system

_x = Ax+Bu (3.12)

if the matrix
S =

�
B AB A2B � � � An�1B

�
(3.13)

is nonsingular, then there exists a nonsingular transformation

y(t) = Qx(t) (3.14)

or
x(t) = Q�1y(t) (3.15)

which transforms the above state equation to the phase-variable form.

_y(t) = ay(t) + bu(t) (3.16)
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where

a =

2
6666664

0 1 0 : : : 0
0 0 1 : : : 0
...
0 0 0 : : : 1

�a1 �a2 �a3 : : : �an

3
7777775

and b =

2
6666664

0
0
...
0
1

3
7777775
(3.17)

a = QAQ�1 and b = QB

The transformation Q is given by

Q =

2
6664
Q1

Q1A
...
Q1A

n�1

3
7775 (3.18)

where

Q1 =
�
0 0 : : : 1

� �
B AB AB2 : : : An�1B

��1
(3.19)

The M-file ss2phv is developed which performs the above transformation.
[a,b] = ss2phv(A,B) returns a and b in phase-variable form.

Example 3.6

Transform the system given below into phase-variable form.

2
4 _x1

_x2
_x3

3
5 =

2
4 0 1 0

3 0 2
�12 �7 �6

3
5
2
4 x1
x2
x3

3
5+

2
4 �1

2
3

3
5u

A = [0 1 0; 3 0 2; -12 -7 -6];
B=[-1; 2; 3];
[a,b]=ss2phv(A,B)

results in

Q = a =
0.2500 0.0714 0.0357 0.0000 1.0000 0.0000

-0.2143 0.0000 -0.0714 0.0000 0.0000 1.0000
0.8571 0.2857 0.4286 -6.0000 -11.0000 -6.0000

b =
0
0
1
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3.6 Solution of the State Equation

The solution of the linear nonhomogenous state equation

_x(t) = Ax(t) +Bu(t) (3.20)

can be obtained by the Laplace transform approach.

sX(s)� x(0) = AX(s) +BU(s)

or

X(s) = �(s)x(0) +�(s)BU(s) (3.21)

where
�(s) = (sI�A)�1 (3.22)

�(t) = L�1[�(s)] is known as the state transition matrix. Thus, solution of the
state equation is

X(t) = L�1[�(s)]x(0) + L�1[�(s)Bu(s)] (3.23)

We can also express the above equation in terms of �(t) and the convolution integral.

x(t) = �(t)x(0) +

Z
t

0

�(�)Bu(t � �)d� (3.24)

If A is nonsingular, then the above equation can be simplified to give the following
impulse, step and ramp responses.

For impulse input u(t) = KÆ(t), the response is

x(t) = �(t)x(0) + �(t)BK (3.25)

For step input u(t) = K , the response is

x(t) = �(t)x(0) +A�1[�(t)� I]BK (3.26)

For ramp input u(t) = Kt , the response is

x(t) = �(t)x(0) + (A2)
�1

[�(t)� I�At]BK (3.27)

3.7 Laplace Transform of State Transition Matrix, �(s)

�(s) is obtained from the Faddeeva algorithm given by

�(s) = (SI �A)�1 =
sn�1En�1 + sn�2En�2 + : : :+E0

ansn + an�1sn�1 + : : :+ a1s+ a0
(3.28)

and the E matrices are

En�1 = I; En�1�k = AEn�k + an�kI K = 1; : : : : ; n� 1

The M-file ltstm, is developed which computes �(s) according to the above algo-
rithm.
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Example 3.7

Determine �(s) for the system given below

�
_x1
_x2

�
=

� �2 �1
2 �5

� �
x1
x2

�
+

�
0
1

�
r(t)

A=[-2 -1; 2 -5];
ltstm(A)

results in

�(s) = inv(SI - A) = P / q where,

P = s**(n-1)E(n-1) + S**(n-2)E(n-2) + . . . + E(0)
q = a(n)s**n + a(n-1)s**n-1 + a(1)s + . . . + a(0)
a(i) = coefficients of the characteristic equation q
The E matrices in descending power of s are :

E =
1 0
0 1

E =
5 -1
2 2

a =
1 7 12

Therefore �(s) is given by

�(s) =

�
1 0
0 1

�
s+

�
5 �1
2 2

�
s2 + 7s+ 12

=

�
s+ 5 �1
2 s+ 2

�
(s+ 3)(s+ 4)

3.8 Evaluation of �(t) from the Characteristic Values of A

3.8.1 Cayley-Hamilton Method

The Cayley-Hamilton theorem states that if the characteristic equation of any square
matrix A is

�n + �1�
n�1 + �2�

n�2 + : : :+ �n = 0 (3.29)

then A satisfies the matrix equation,

An + �1A
n�1 + �2A

n�2 + : : : + �nI = 0 (3.30)

That is, every square matrix satisfies its own characteristic equation.
Let

eAt = k1(t)I + k2(t)A+ k3(t)A
2 + : : : Kn(t)A

n�1 (3.31)
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It can be shown that a scalar equation, equivalent to the above equation, is satisfied
when A is replaced by �; that is,

e�t =

2
6666664

1 �1 �1
2 : : : �1

n�1

1 �2 �2
2 : : : �2

n�1

1 �3 �3
2 : : : �3

n�1

...
1 �n �n

2 : : : �n
n�1

3
7777775
K (3.32)

where �’s are the distinct eigenvalues of A. When two eigenvalues are equal, for
example when �2 = �3, then the third row of the above matrix is replaced by

de�t

d�
=

d

dt
(k1 + �k2 + �2k3 + : : :+ �n�1Kn) (3.33)

The M-file stm is developed based on the Cayley-Hamilton method. This function
evaluates the state transition matrix in closed form. Repeated eigenvalues are of mul-
tiplicity two. The following example demonstrates the use of this function.

Example 3.8

Find the state transition matrix �(t) for the system of Example 3.7.

A=[-2 -1; 2 -5];
stm(A)

results in

The state transition matrix is given by:
�(t) = SumCi*exp(Li*t)

+ Sum{Dj*t*exp(Lj*t)} i=1,...,n-j

where
Li = eigenvalues & Ci = the corresponding constituent

matrix
Lj = repeated eigenvalues & Dj = the constituent matrix.

Li =
-3

Ci =
2 -1
2 -1

Li =
-4

Ci =
-1 1
-2 2

Thus, the state transition matrix is

�(t) =

�
2 �1
2 �1

�
e�3t+

� �1 1
�2 2

�
e�4t =

�
2e�3t � e�4t �e�3t + e�4t

2e�3t � 2e�4t �e�3t + 2e�4t

�
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3.9 Numerical Solution of the State Equation

The practical procedure for finding the time response of a system is through digital
simulation. State-space representation enables us to simulate control systems on the
computer. We have already seen the numerical solution of differential equations us-
ing functions ode23 and ode45 in Chapter 2. In fact, in order to solve an nth-order
differential equation, it was necessary to transform it into n first-order differential
equations, namely the state-variable representation.

For continuous-time linear systems, the Control System Toolbox provides the
functions [y,x] = impulse(A,B,C,D,iu,t) and [y,x] = step(A,B,C,D,iu,t) which obtain
the impulse response and step response of the state equation. The function [y,x] =
lsim[A,B,C,D,U,t] simulates the state equation with arbitrary input.

Example 3.9

The state equation of a linear time-invariant system is represented by

2
4 _x1

_x2
_x3

3
5 =

2
4 0 1 0

0 0 1
�6 �11 �6

3
5
2
4 x1
x2
x3

3
5+

2
4 1

1
1

3
5 r(t)

y =
�
1 1 0

�
x

Given

x(0) =

2
4 1

0:5
�0:5

3
5

Determine x(t) and y(t), where r(t) is a unit step function.

A = [0 1 0; 0 0 1; -6 -11 -6];
B=[1;1;1]; C=[1 1 0]; D=0;
x0=[1 .5 -.5]; t=0:.05:4;
U=ones(1,length(t)); % generates a row vector u(t)
[y,x]=lsim(A,B,C,D,U,t,x0);
plot(t,x,t,y)
title('Numerical solution of the state equation of Ex. 3.9')
xlabel('Time - sec.')
text(3.8,1.8,'y'), text(3.8,2.6,'x1'), text(3.8,-.8,'x2'),
text(3.8,-1.4,'x3')

The output is shown graphically in Figure 3.2.

Example 3.10

For Example 3.9, determine and plot y(t) and x(t) if the input is given by r(t) =
sin(2�t).

A = [0 1 0; 0 0 1; -6 -11 -6];
B = [1; 1; 1]; C=[1 1 0]; D=0;
t = 0:.05:4; % time interval
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0 0.5 1 1.5 2 2.5 3 3.5 4
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
Numerical solution of the state equation of Ex. 3.9

Time − sec.

y

x1

x2

x3

FIGURE 3.2
Numerical solution for Example 3.9.

U = sin(2*pi*t);
x0 = [1 0.5 -0.5]; % row vector of initial conditions
[y,x] = lsim(A,B,C,D,U,t,x0);
plot(t,x,t,y)
title('Numerical solution of the state equation of Ex. 3.10')
xlabel('Time - sec.')
text(.1, 1.7,'y'), text(.1,1.25,'x1'),
text(.1,.55,'x2'), text(.1, -1, 'x3')

The output is shown graphically in Figure 3.3.

3.10 Block Diagram Reduction

The MATLAB Control System Toolbox script file blkbuild and the function connect
convert block diagrams to state-space models. The transfer function blocks are num-
bered sequentially from 1 to the number of the blocks. nblocks defines the total
number of blocks and bldblock converts each block to an unconnected state-space
representation. The statement [A,B,C,D] = connect(a,b,c,d,q,iu,iy) connects up the
blocks according to a predefined matrix q that specifies the interconnections. The first
element of each row of the q matrix is the block number. The remaining elements
indicate the source of the block’s summing input. When the input to the summing
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0 0.5 1 1.5 2 2.5 3 3.5 4
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0.5
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Numerical solution of the state equation of Ex. 3.10

Time − sec.

y

x1

x2

x3

FIGURE 3.3
Numerical solution for Example 3.10.

junction is negative, the block number is entered with a negative sign. The iu and iy
are two row vectors indicating retaining input and output blocks. Finally, to obtain
the overall transfer function, [num,den] = ss2tf(A,B,C,D,iu) calculates the transfer
function from the iu’th input.

Example 3.11

Determine the state-space representation and the overall transfer function for a system
with the following block diagram representation.
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��
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4
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R(s) C(s)

� � �1 2 3 4 5

6

7
8

n1 = 1; d1=1; n2 =.5; d2=1; n3 = 4; d3=[1 4];
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n4 = 1; d4=[1 2]; n5 = 1; d5=[1 3]; n6 = 2; d6=1;
n7 = 5; d7=1; n8 = 1; d8=1;
nblocks=8; blkbuild
q= [ 1 0 0 0 0 % q matrix indicates the block

2 1 -6 -7 -8 % diagram configurations
3 2 0 0 0
4 3 0 0 0
5 4 0 0 0
6 3 0 0 0
7 4 0 0 0
8 5 0 0 0 ];

iu = [1]; % input for the connected system
iy = [8]; % output for the connected system
[A ,B,C,D]=connect(a,b,c,d,q,iu,iy) % connect the block
[num,den]=ss2tf(A,B,C,D,1) % convert to transfer function

The result is

A = B = C = D =
-8.0 -2.5 -0.5 0.5 0 0 1 0 0
4.0 -2.0 0 0
0 1.0 -3.0 0

num = Den =
0 0 0 2 1.0 13.0 56.0 80.0

Thus, the overall transfer function is

C(s)

R(s)
=

2

s3 + 13s2 + 56s+ 80

The Control System Toolbox contains four more functions which are useful in
model building. append lumps together the dynamics of two state-space systems,
forming an augmented model. parallel and series connect two state-space systems in
parallel and series, respectively. Finally, ode generates A, B, C , D for a second order
system.

A much better method of finding the overall transfer function of a control system
is to build the block diagram as a SIMULINK model. Run the simulation and to
extract the linear model of this SIMULINK system, in the Command Window, enter
the command

[A,B,C,D] = linmod('Simulink file name')
[num, den]=ss2tf(A, B, C, D)

See Example 1.27.



CHAPTER

4
SYSTEM RESPONSES

Assessing the time-domain performance of closed-loop system models is important
because control systems are inherently time-domain systems. The performance of
dynamic systems in the time domain can be defined in terms of the time response to
standard test inputs. One very common input to control systems is the step function.
If the response to a step input is known, it is mathematically possible to compute the
response to any input. Another input of major importance is the sinusoidal function. A
sinusoidal steady-state output is obtained when an asymptotically stable linear system
is subjected to a sinusoidal input. Thus, if we know the response of a linear time-
invariant system to sinusoids of all frequencies, we have a complete description of the
system.

4.1 The Response of Second-Order Systems

The standard form of the second-order transfer function is given by

G(s) =
!n

2

s2 + 2�!ns+ !n2
(4.1)

where !n is the natural frequency. The natural frequency is the frequency of oscil-
lation if all of the damping is removed. Its value gives us an indication of the speed
of the response. � is the dimensionless damping ratio. The damping ratio gives us an
idea about the nature of the transient response. It gives us a feel for the amount of
overshoot and oscillation that the response undergoes.

77
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The transient response of a practical control system often exhibits damped os-
cillations before reaching steady-state. The underdamped response (� < 1) to a unit
step input, subject to zero initial condition, is given by

c(t) = 1� 1

�
e��!nt sin(�!nt+ �) (4.2)

where � =
p
1� �2 and � = tan�1(�=�).

4.2 Time-Domain Performance Specifications

The performance criteria that are used to characterize the transient response to a unit
step input include rise time, peak time, overshoot, and settling time. We define the rise
time tr as the time required for the response to rise from 10 percent of the final value
to 90 percent of the final value. The time to reach the peak value is tp. The swiftness of
the response is measured by tr and tp. The similarity with which the actual response
matches the step input is measured by the percent overshoot and settling time ts. For
underdamped systems the percent overshoot P.O. is defined as

P:O: =
maximum value� final value

final value
(4.3)

The peak time is obtained by setting the derivative of (4.2) to zero.

tp =
�

!n
p
1� �2

(4.4)

The peak value of the step response occurs at this time, and evaluating the response
in (4.2) at t = tp yields

C(tp) =Mpt = 1 + e���=
p

1��2 (4.5)

Therefore, from (4.3), the percent overshoot is

P:O: = e���=
p

1��2 � 100 (4.6)

Settling time is the time required for the step response to settle within a small percent
of its final value. Typically, this value may be assumed to be �2 percent of the final
value. For the second-order system, the response remains within 2 percent after 4 time
constants, that is

ts = 4� =
4

�!n
(4.7)

A function called timespec(num, den) is written which obtains the time-domain
performance specifications, P:O:, tp, tr and ts. num and den are the numerator and
denominator of the system closed-loop transfer function.
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4.3 Effects of Additional Poles and Zeros

4.3.1 Addition of a Zero

The zeros of a transfer function affect the amplitude of a response component but do
not affect the nature of the response. The closer the zero is to the dominant poles, the
more effect it has on the transient response. The rise time and the peak time are de-
creased, while the overshoot is increased. As the zero moves away from the dominant
poles, the response approaches that of the second-order system.

4.3.2 Addition of a Pole

Since the poles of the closed-loop transfer function are the roots of the characteristic
equation, they control the transient response of the system directly. The rise time and
the peak time are increased with a reduction in the overshoot, resulting in a more
sluggish response. As the pole moves away from the dominant pole, it has less effect.
Since this additional exponential term decays after five time-constants and if the pole
is five times farther to the left than the dominant poles, the system can be represented
by a second-order model.

The transfer function of a third-order system with one zero may be written in
the following standard form

C(s) =
!n

2(1 + as)

(1 + Ts)(s2 + 2�!ns+ !n2)
K=s (4.8)

Taking the inverse Laplace transform, the underdamped transient response
(� < 1) is

c(t) = K[1 +
1

�

r
�

�
e��!nt sin(�!nt+ �) +

�

�
e�

t
T ] (4.9)

where

� =
q
1� �2; � = 1�2�a!n+a

2!n
2; � = 1�2T�!n+T

2!n
2; � = !n

2T (a�T );
and

� = tan�1
�

a�!n
1� a�!n

�
� tan�1

�!nT

1� T�!n
� tan�1

�

�� :

The function c = stepzwn(z; !n;R;a;T; t) is developed which obtains the
step response of (4.9) where z is the damping factor, !n is the natural frequency, and
R is the magnitude of the step function. For second-order systems, a and T are set
to zero, and t is the specified time interval. Time-response formulas for the critically
damped and overdamped cases are also obtained and included in the above function.

Given a transfer function of a closed-loop control system, the Control System
Toolbox function step(num, den) produces the step response plot with the time vector
automatically determined. If the closed-loop system is defined in state space, we use
step(A, B, C, D). step(num, den, t) or step(A, B, C, D, iu, t) uses the user-supplied
time vector t. The scalar iu specifies which input is to be used for the step response.
If the above commands are invoked with the left-hand arguments [y, x, t], the output
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vector, the state response vectors, and the time vector t are returned, and we need to
use plot function to obtain the plot. See also initial and lsim functions. A function
called timespec(num, den) is written which obtains the time-domain performance
specifications, P:O:, tp, tr, and ts. num and den are the numerator and denominator
of the system closed-loop transfer function.

Example 4.1

Obtain the step response and the time-domain specifications for the system shown
below, where � = 0:6 and !n = 5.

.........................................................................................

.......
...
..
..
..

!2n
s2+2�!ns+!2n

.........................................................................................

.......
...
..
..
..

R(s) C(s)

The commands

num = 25; den = [1 6 25];
step(num, den), grid
timespec(num, den)

result in

Peak time = 0.786667 Percent overshoot = 9.47783
Rise time = 0.373333
Settling time = 1.18667

Time (sec.)

A
m

pl
itu

de

Step Response

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
From: U(1)

T
o:

 Y
(1

)

FIGURE 4.1
Unit step response of Example 4.1.

The result is shown in Figure 4.1.
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Example 4.2

Obtain the unit step response, rise time, peak time and percent overshoot for the sys-
tem whose closed-loop transfer function is given below

C(s)

R(s)
=

25(1 + 0:4s)

(1 + 0:16s)(s2 + 6s+ 25)
=

10s+ 25

0:16s3 + 1:96s2 + 10s+ 25

The following commands

num = [10, 25];
den = [0.16 1.96 10 25];
t = 0:0.02:2;
c = step(num, den, t); plot(t, c),
xlabel('t - sec. '), ylabel('c(t)'), grid
timespec(num, den)

result in

Peak time = 0.553333 Percent overshoot = 37.9675
Rise time = 0.206667
Settling time = 1.59

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

t − sec.

c(
t)

FIGURE 4.2
Unit step response of Example 4.2.

The result is shown in Figure 4.2.

Example 4.3

The block diagram of a servomechanism is shown below. Determine values of d and
e so that the maximum overshoot in unit step response is 40 percent and peak time is
0.8 second.
The following commands
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.......................................................................

.......
...
..
..
..

��
��

.......................................................................

.......
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..

d
s(s+1)

.........................................................................................
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.

..
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R(s) C(s)

�

os = 40; tmax=.80;
z= log(100/os)/sqrt( pi^2 +(log(100/os))^2 ) %From Eq. (4.6)
wn = pi/(tmax*sqrt(1-z^2)) %From Eq. (4.4)
num = wn^2; den = [1 2*z*wn wn^2];
t = 0:0.02:4;
c = step(num, den, t); plot(t, c),
xlabel('t - sec. '), ylabel('c(t)'), grid
timespec(num, den),

result in

z = 0.2800
wn = 4.0906

Peak time = 0.803239 Percent overshoot = 39.9965
Rise time = 0.314311
Settling time = 3.37011

From the block diagram we have

C(s)

R(s)
=

d

s2 + (de+ 1)s+ d

The characteristic equation is

s2 + (de + 1)s+ d = s2 + 2�!ns+ !n
2

equating the coefficient

d = !n
2 = 4:09062 = 16:733

and

de+ 1 = 2(0:28)(4:0906)

Therefore

e = 0:077

The result is shown in Figure 4.3.
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FIGURE 4.3
Unit step response of Example 4.3.

4.4 Frequency Response of Systems

The frequency response of a system is defined as the steady-state response of the
system to a sinusoidal input signal. Consider a system with transfer function G(s)
and a sinusoidal input

r(t) = A cos!t (4.10)

Using the transform of r(t), the transform C(s) of the system output is

C(s) =
AsG(s)

s2 + !2
(4.11)

The partial fraction expansion results in

C(s) =
k1
s� j

+
k1

�

s+ j
+� terms generated by the poles of G(s) (4.12)

The poles of G(s) are the natural frequencies (or natural modes). They govern the
waveform of the transient component of the response. For the linear lumped net-
work, the terms generated by the poles of G(s) will not contribute to the steady-state
response c(t). Therefore, the steady-state response is given by the inverse Laplace
transform of the first two terms of C(s).

c(t) = A jG(j!)j cos(!t+ �) (4.13)

From this equation it can be seen that system output has the same frequency as the
input and can be obtained by multiplying the magnitude of the input by jG(j!)j and
shifting the phase angle of the input by the angle ofG(j!). The magnitude G(j!) and
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its angle � for all ! constitute the system frequency response, and provide a significant
insight for the analysis and design of control systems. The correlation between fre-
quency and transient responses is indirect, except in the case of second-order systems.
In practice, the frequency response characteristic is adjusted by using various design
criteria which will normally result in an acceptable transient response.

Consider first the frequency response of a first-order system with the following
transfer function

G(s) =
1

�s+ 1
(4.14)

The sinusoidal steady-state transfer function is given by

G(j!) =
1

[1 + �2!2]1=2
6 �(!) (4.15)

where �(!) = � tan�1 �!.

Plots of jG(j!)j and �(!) are given in Figure 4.4. The system bandwidth (BW) is
defined as that value of frequency at which the magnitude of the frequency response
is reduced to 1=

p
2 of its low frequency value. This frequency is denoted by !B . For

the first-order system the bandwidth is given by !B = 1=� .
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FIGURE 4.4
Frequency response of a first-order system.

Now consider the standard second-order transfer function

G(s) =
!n

2

s2 + 2�!ns+ !n2
(4.16)
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The frequency response is given by

G(j!) =
1�

(1� !
!n

2)
2
+ (2� !

!n
)2
�1=2 6 �(!) (4.17)

A plot of frequency response for a given � and !n is given in Figure 4.5.
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FIGURE 4.5
Frequency response of a second-order system.

For a constant � , increasing !n causes the bandwidth to increase by the same
factor. This corresponds to a decrease in the peak time tp and the rise time tr of
the transient response. Therefore, to increase the speed of response of a system, it is
necessary to increase the system bandwidth. For a particular system, an approximate
relationship is given by

!Btr ' constant (4.18)

where this constant has a value approximately equal to 2.
The frequency at which the peak occurs is obtained by setting the derivative of

(4.16) to zero. For � < 0:707 , the resonance frequency !r is given by

!r = !n

q
1� 2�2 (4.19)

The maximum value of the magnitude of the step response, denoted by Mp! , is

Mp! =
1

2�
p
1� �2

(4.20)
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The peak in the frequency response is directly related to the amount of overshoot in
the transient response. The greater the peak, the more overshoot that occurs. Thus,
in the control system design the Mp! is usually restricted to a maximum allowable
value.

Given a transfer function of a system, the Control System Toolbox function
bode(num, den) produces the frequency response plot with the frequency vector au-
tomatically determined. If the system is defined in state space, we use bode(A, B, C,
D). bode(num, den, !) or bode(A, B, C, D, iu, !) uses the user-supplied frequency
vector !. The scalar iu specifies which input is to be used for the frequency response.
If the above commands are invoked with the left-hand arguments [mag, phase, !],
the frequency response of the system in the matrices mag, phase, and ! are returned,
and we need to use plot or semilogx functions to obtain the plot.

For second-order systems with � < 1, (4.18) and (4.19) can be utilized to com-
pute the frequency !r and the peak value Mp! of the frequency response. However,
the function frqspec(w, mag) is developed which will return !r, Mp!, and !B based
on the functional values of w and mag.

Example 4.4

A system is described by the closed-loop transfer function

G(s) =
4

s2 + 2s+ 4

Obtain the frequency response, peak amplitude Mp!, frequency !r, and the band-
width !B of the system.

The following commands

num = 4;
den = [1 2 4];
w=0:.01:3;
[mag, phase]=bode(num, den, w);
frqspec(w,mag)
plot(w, mag)
ylabel('Magnitude'),xlabel('\omega, rad/s'), grid

will result in

Peak Mag. = 1.15 wr = 1.41 Bandwidth = 2.54

The result is shown in Figure 4.6.

Example 4.5

A pole is added to the closed-loop transfer function of Example 4.4 and the new
transfer function is

G(s) =
2:5� 4

(s+ 2:5)(s2 + 2s+ 4)
=

10

s3 + 4:5s2 + 9s+ 10

Determine:
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FIGURE 4.6
Frequency response of Example 4.4.

1. the step response and the rise time tr.

2. the frequency response and the bandwidth !B .

3. the approximate value of the bandwidth to have a rise time of 0.5 s in the tran-
sient response.

The following commands

num = 10;
den = [1 4.5 9 10];
t=0:.02:4;
c = step(num, den, t);
timespec(num, den)
w=0:.01:3;
[mag, phase]=bode(num, den, w);
frqspec(w, mag)
subplot(2,1,1), plot(t,c), title(' Step response')
ylabel('c(t)'),xlabel('Time, sec'), grid
subplot(2,1,2), plot(w,mag), title(' Frequency response')
ylabel('Magnitude'),xlabel('\omega, rad/s'), grid

result in

Peak time = 2.32 Percent overshoot = 10.6117
Rise time = 1.06
Settling time = 3.26

Peak Mag. = 1.03 wr = 1.07 Bandwidth = 2.13
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The result is shown in Figure 4.7.
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FIGURE 4.7
Step response and frequency response of Example 4.5.

The bandwidth rise time product is !Btr = 2:14 � 1:06 = 2:268. Thus from
(4.18), for a rise time tr = 0:5s, it is necessary to increase the system bandwidth to
2:268=0:5 ' 4:54.

Example 4.6

Given the system described by the third-order transfer function

G(s) =
750

s3 + 36s2 + 205s + 750

1. Find the dominant poles of the system.

2. Find a reduced-order model of the system. Determine tr, tp and percent over-
shoot in the step response. Also, find !r, Mp! and the bandwidth !B in the
frequency response.

3. Find the exact values for the parameters and compare them with the values in
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2).

The commands

a = [ 1 36 205 750];
r = roots(a)

result in

p =
-30
-3 + 4i
-3 - 4i

Therefore the transfer function is

G(s) =
750

(s+ 30)(s2 + 6s+ 25)
=

25

(1 + 0:0333s)(s2 + 6s+ 25)

The dominant poles are �3 � j4. Since the real pole s = �30 is far from the
dominant poles, its effect is minimal and may be neglected. Therefore the approximate
transfer function is

G(s) ' 25

s2 + 6s+ 25

num1 = 25; den1 = [1 6 25]; % Approximate 2nd-order system
t=0:.02:2;
c1 = step(num1, den1, t);
timespec(num1, den1)

w=0:.02:8;
[mag1, phase1]=bode(num1, den1, w);
frqspec(w, mag1)

num2 =750; den2 =[1 36 205 750]; % 3rd-order system
c2= step(num2, den2, t);
timespec(num2, den2)

[mag2, phase2]=bode(num2, den2, w);
frqspec(w, mag2)

subplot(2,2,1), plot(t,c1), xlabel('t, sec.'), grid
title(' Approximate 2nd order system')
subplot(2,2,2), plot(w, mag1), xlabel('\omega, rad/s'), grid
subplot(2,2,3), plot(t,c2), xlabel('t, sec.'), grid
title(' Actual 3rd order system')
subplot(2,2,4), plot(w,mag2), xlabel('\omega, rad/s'), grid
subplot(111)

The result for the reduced-order system is
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Peak time = 0.786667 Percent overshoot = 9.47783
Rise time = 0.373333
Settling time = 1.18667

Peak Mag. = 1.04 wr = 2.64 Bandwidth = 5.75

The third-order system parameters are

Peak time = 0.823333 Percent overshoot = 9.32926
Rise time = 0.376667
Settling time = 1.22333

Peak Mag. = 1.04 wr = 2.58 Bandwidth = 5.67

The step and frequency response for the actual system and the approximate second-
order system are shown in Figure 4.8. Comparison of the results shows little change
in the parameters of the reduced-order model.
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FIGURE 4.8
Step response and frequency response of Example 4.6.
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4.5 Control System Toolbox
LTI Models and LTI Viewer

The Control System Toolbox provides many tools for analysis and design of control
systems. In this section the LTI viewer is briefly described. For additional information
and use of the control design tools refer to the Control System Toolbox version 4.

4.5.1 LTI Models

The following commands forms the transfer function, zero/pole/gain, or state-space
models

G1=tf(num, den) % transfer function
G2=zpk(z, p, k) % zero/pole/gain
T= ss=(A, B, C, D) % state space

The command T = feedback(G, H) returns the transfer function of a simple
negative feedback control system. For positive feedback, an additional argument of
+1 is used. That is, for positive feedback the syntax is T = feedback(G, H, +1). You
can perform summing and cascading operations on LTI systems.

Example 4.7

Obtain the closed-loop transfer function for the control system shown in Figure 4.9.
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FIGURE 4.9
Block diagram for Example 4.7.

The following commands

G=tf(3,[1 8])*tf([1 1], [1 4]) + tf(1, [1 0]);
H=tf(10,[1 2]);
T=feedback(G, H)

result in

Transfer function:
4 s^3 + 23 s^2 + 62 s + 64

-----------------------------------
s^4 + 14 s^3 + 96 s^2 + 214 s + 320
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4.5.2 The LTI Viewer

The LTI Viewer is an interactive user interface that can be utilized to obtain various
system responses. The command syntax is

ltiview(’plot type’, sys, Extra)
where sys is the transfer function name and ’plot type’ is one of the following re-
sponses:

step bode
impulse nyquist
initial nichols
lsim sigma

Extra is an optional argument specifying the final time. Once an LTI Viewer is opened,
the right-click on the mouse allows you to change the response type and obtain the
system time-domain and frequency-domain characteristics.

Example 4.8

Use the LTI Viewer to obtain the step response and the closed-loop frequency re-
sponse for the control system shown in Figure 4.10.
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FIGURE 4.10
Block diagram for Example 4.8.

We use the following commands

G=tf([1 10], [1 2 8]);
H=tf(1,[1 5]);
T=feedback(G, H)
ltiview('step', T)

The system step response is obtained as shown in Figure 4.11. The mouse right-click
is used to obtain the time-domain specifications. From File menu you can select Print
to Figure option to obtain a Figure Window for the LTI Viewer for editing the graph.

In the LTI Viewer, hold on the mouse right button and select the Plot Type pop-
up menu, scroll down and select Bode plot. This will produce the amplitude and phase
angle frequency response as shown in Figure 4.12. The mouse right-click is used to
obtain the response peak amplitude.
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CHAPTER

5
CONTROL SYSTEM
CHARACTERISTICS

The objective of the control system is to control the output c in some prescribed man-
ner by the input u through the elements of the control system. Some of the essential
characteristics of feedback control systems are investigated in the following sections.

5.1 Stability

For a system to be usable it must be stable. A linear time-invariant system is stable if
every bounded input produces a bounded output. We call this characteristic stability.
The response is bounded if the poles of the closed loop system are in the left-hand
portion of the s-plane. Thus, a necessary and sufficient condition for a feedback sys-
tem to be stable is that all the poles of the system transfer function have negative real
parts.

The stability of a linear time-invariant system may be checked by using the Con-
trol System Toolbox function impulse to obtain the impulse response of the system.
The system is stable if its impulse response approaches zero as time approaches infin-
ity. One way to determine the stability of a system is by simulation. The function lsim
can be used to observe the output for typical inputs. This is particularly useful for non-
linear systems. Alternatively, the MATLAB function roots can be utilized to obtain
the roots of the characteristic equations. In the classical control theory, several tech-
niques have been developed requiring little computation for stability analysis. One
of these techniques is the Routh-Hurwitz criterion. In this chapter an answer to the

94
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question of absolute stability is demonstrated using a simple program based on the
Routh-Hurwitz criterion. Consideration of the degree of stability of a system often
provides valuable information about its behavior. That is, if it is stable, how close is it
to being unstable? This is the concept of relative stability. Usually, relative stability is
expressed in terms of the speed of response and overshoot. Other methods frequently
used for stability studies are the Bode diagram, Root-locus plot, Nyquist criterion,
and Lyapunov’s stability criterion. Some of these techniques are presented in later
chapters.

5.2 The Routh-Hurwitz Stability Criterion

The Routh-Hurwitz criterion provides a quick method for determining absolute sta-
bility that can be applied to an nth-order characteristic equation of the form

ans
n + an�1s

n�1 + : : :+ a1s+ a0 = 0 (5.1)

The criterion is applied through the use of a Routh table defined as

sn

sn�1

sn�2

sn�3

: : :

����������

an an�2 an�4 : : :
an�1 an�3 an�5 : : :
b1 b2 b3 : : :
c1 c2 c3 : : :
: : : : : : : : : : : :

an, an�1, : : :, a0 are the coefficients of the characteristic equation and

b1 =
an�1an�2 � anan�3

an�1
; b2 =

an�1an�4 � anan�5
an�1

; etc.

c1 =
b1an�3 � an�1b2

b1
; c2 =

b1an�5 � an�1b3
b1

; etc.

Calculations in each row are continued until only zero elements remain. The necessary
and sufficient condition that all roots of (5.1) lie in the left half of the s-plane is that
the elements of the first column of the Routh array have the same sign. If there are
changes of signs in the elements of the first column, the number of sign changes
indicates the number of roots with positive real parts.

A function called routh(a) is written that forms the Routh array and determines
if any roots have positive real parts. a is a row vector containing the coefficients of the
characteristic equation.

Example 5.1

Determine if the following characteristic equation represents a stable system.

s4 + 10s3 + 35s2 + 50s+ 24 = 0
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a = [1 10 35 50 24];
routh(a)

results in

Routh-Hurwitz Array
1 35 24
10 50 0
30 24 0
42 0 0
24 0 0

System is stable

Example 5.2

Apply the Routh-Hurwitz criterion to the following characteristic equation to deter-
mine the number of roots in the right half s-plane.

s4 + 4s3 � 7s2 � 22s+ 24 = 0

a = [1 4 -7 -22 24];
routh(a)

results in

Routh-Hurwitz Array
1.0000 -7.0000 24.0000
4.0000 -22.0000 0

-1.5000 24.0000 0
42.0000 0 0
24.0000 0 0

There are 2 roots in the right half s-plane

5.2.1 Special Cases

Case 1

If the first element in a row is zero, it is replaced by a very small positive number �,
and the calculation of the array is completed. This case is demonstrated in Example
5.3.

Example 5.3

Use the Routh-Hurwitz criterion to determine the number of roots in the right half
s-plane for

s4 � 5s2 + 20s+ 24 = 0

a = [1 0 -5 20 24];
routh(a)
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results in

Zero in the first column is replaced by 0.00001
Routh-Hurwitz Array

1.0000e+000 -5.0000e+000 2.4000e+001
1.0000e-005 2.0000e+001 0

-2.0000e+006 2.4000e+001 0
2.0000e+001 0 0
2.4000e+001 0 0

There are 2 roots in the right half s-plane

Case 2

If all elements in a row are zero, the system has poles on the imaginary axis, pairs of
complex conjugate roots forming symmetry about the origin of the s-plane, or pairs
of real roots with opposite signs. In this case, an auxiliary equation is formed from
the preceding row. The all-zero row is then replaced with coefficients obtained by
differentiating the auxiliary equation. This case is demonstrated in Example 5.4.

Example 5.4

Construct the Routh array for the characteristic equation of the system given in Figure
5.1.

.........................................................................................

........
...
..
..
.

1
s6+10s5+36s4+60s3+59s2+50s+24

.........................................................................................

........
...
..
..
.

R(s) C(s)

FIGURE 5.1
System for Example 5.4.

a = [1 10 36 60 59 50 24];
routh(a)

results in

Elements of row 6 are all zero.
They are replaced by the auxiliary Eq. coefficients

Routh-Hurwitz Array
1 36 59 24

10 60 50 0
30 54 24 0
42 42 0 0
24 24 0 0
48 0 0 0
24 0 0 0

The characteristic equation includes roots on the jw-axis or
pairs of real or complex roots symmetrical about the jw-axis
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5.3 Sensitivity

One of the objectives of using feedback in a control system is to reduce the system’s
sensitivity to parameter variations and noise. A good control system should be insen-
sitive to parameter changes or external disturbances. The sensitivity of a system can
be measured as the ratio of the percentage change in the system transfer function to
the percentage change in a parameter b. For example, the sensitivity of the transfer
function T(s) to the variation in the parameter b is defined as

Sb
T =

�T (s)=T (s)

�b=b
=

�T (s)

�b

b

T (s)
(5.2)

As �b approaches zero, the sensitivity of T with respect to b is

Sb
T =

@T (s)

@b

b

T (s)
(5.3)

The static sensitivity is the value of S for s ! 0. Dynamic sensitivities are usually
calculated by replacing s by j! and plotting S as a function of frequency, !. The
magnitude of S(j!), in fact, measures system errors. So the aim is to minimize it.
This is comparatively easy to do at low frequencies because of the finite bandwidth of
physical devices. Any physical system has a finite bandwidth. Therefore, the transfer
function of a real control system always tends to zero, and its sensitivity function
tends to unity at large ! (i.e., S(j!) ! 1 as ! ! 1 ). This condition leads to large
system error and no disturbances can be rejected.

Example 5.5

Consider the control system represented by the block diagram shown in Figure 5.2,
where b has a nominal value of 4 and h has a nominal value of 0.5.
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FIGURE 5.2
System for Example 5.5.

1. Find the sensitivity of T (s) with respect to b. Plot the magnitude of the sensi-
tivity function as a function of frequency for K = 2 and K = 0:5.

2. Find the sensitivity of T (s) with respect to h. Plot the magnitude of the sensi-
tivity function as a function of frequency for K = 2 and K = 0:5 .
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The system transfer function is

T (s) =
Kb

s+ 1 +Kbh

for b = 4 and h = 0:5, the system bandwidth !B is 1 + 2K .
Sensitivity of T with respect to b evaluated at the nominal values b = 4 and h = 0:5
is

Sb
T =

@T

@b

b

T
=

s+ 1

s+ 1 +Kbh
=

s+ 1

s+ 1 + 2K

Similarly, sensitivity of T with respect to h evaluated at the nominal values b = 4 and
h = 0:5 is

Sh
T =

@T

@h

h

T
=

�Kbh
s+ 1 +Kbh

=
�2K

s+ 1 + 2K

The following program computes and plots jSbT (j!)j and jShT (j!)j for K = 2 and
K = 0:5.

k1=2;k2=0.5;
num=[1 1];
den1=[1 1+2*k1];
den2=[1 1+2*k2];
w=0:.02:15;
STb1 = bode(num,den1,w); % Magnitude of S(jw)
STb2 = bode(num,den2,w); % Magnitude of S(jw)
subplot(2,1,1),plot(w,STb1, w, STb2), grid
title('Sensitivity of T with respect to b')
xlabel('\omega, Rad/s'), ylabel('|S(j\omega)|')
text(3, 0.83,'K=0.5'),text(3,.44,'K=2')
num1 = -2*k1; num2 = -2*k2;
STb1 = bode(num1,den1,w); % Magnitude of S(jw)
STb2 = bode(num2,den2,w); % Magnitude of S(jw)
subplot(2,1,2),plot(w,STb1, w, STb2), grid
text(11,-.1,'\omega Rad/s'),text(2.7,.15,'K=0.5'),text(2.7,.59,'K=2')
title('Sensitivity of T with respect to h')
xlabel('\omega, Rad/s'), ylabel('|S(j\omega)|')
subplot(111)

From Figure 5.3 we can see that sensitivity of the system to b decreases with increas-
ing open-loop gain K; whereas the sensitivity to h increases with increasing K . It is
clear that sensitivity to b increases rapidly outside the system bandwidth !B , and sen-
sitivity to h increases for frequency below bandwidth. More applications of sensitivity
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in the design and analysis of control system will be presented in later chapters. The
result is shown in Figure 5.3.

0 5 10 15
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0.4

0.6

0.8

1

ω
B
=2 ω

B
=5

ω, Rad/s

K=0.5

K=2

Sensitivity of T with respect to b

|S
(jω

)|

0 5 10 15
0

0.2

0.4

0.6

0.8

ω Rad/s

K=0.5

K=2

Sensitivity of T with respect to h

|S
(jω

)|

FIGURE 5.3
Example 5.5.

5.4 Steady-State Error and System Type

In addition to being stable, a control system is also expected to meet a specified per-
formance requirement when it is commanded by a set-point change or disturbed by
an external force. The performance of the control system is judged not only by the
transient response, but also by steady-state error. The steady-state error is the error as
the transient response decays leaving only the continuous response. High loop gains,
in addition to sensitivity reduction, will also reduce the steady-state error. The steady-
state error for a control system is classified according to its response characteristics to
a polynomial input. A system may have no steady-state error to a step input, but the
same system may exhibit nonzero steady-state error to a ramp input. This depends on
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the type of the open-loop transfer function.
Consider the system shown in Figure 5.4. The closed-loop transfer function is

C(s)

R(s)
=

G(s)

1 +G(s)H(s)
(5.4)

The error of the closed-loop system is
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FIGURE 5.4
Nonunity feedback control system.

E(s) = R(s)�H(s)C(s) =
1

1 +G(s)H(s)
R(s) (5.5)

Using the final-value theorem, we have

ess = lim
s!0

sR(s)

1 +G(s)H(s)
(5.6)

For the polynomial inputs, such as step, ramp and parabolas, the steady-state error
from the above equation will be

Unit step input

ess =
1

1 + lims!0G(s)H(s)
=

1

1 +Kp
(5.7)

Unit ramp input

ess =
1

lims!0 sG(s)H(s)
=

1

Kv
(5.8)

Unit parabolic input

ess =
1

lims!0 s2G(s)H(s)
=

1

Ka
(5.9)

In order to define the system type, the general open loop transfer function is written in
the following form:

G(s)H(s) =
K(1 + T1S)(1 + T2s) : : : (1 + Tms)

sj(1 + Tas)(1 + Tbs) : : : (1 + Tns)
(5.10)

The type of feedback control system refers to the order of the pole of G(s)H(s) at
s = 0. The steady-state error for type 0, 1 and 2 systems are tabulated in Table 5.1.
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Table 5.1 Steady-state Errors

R(s)
1

s

1

s2

1

s3

j

0
1

1 +Kp
1 1 Kp = lims!0G(s)H(s)

1 0
1

Kv
1 Kv = lims!0 sG(s)H(s)

2 0 0
1

Ka
Ka = lims!0 s

2G(s)H(s)

Two functions, errorzp(z,p,k) and errortf(num, den), are written for compu-
tation of system steady-state error due to typical inputs, namely unit step, unit ramp,
and unit parabolic. errorzp(z,p,k) finds the steady-state error when the system is rep-
resented by the zeros, poles, and gain. z is a column vector containing the transfer
function zeros, p is a column vector containing the poles, and k is the gain. If the
numerator power, m, is less than the denominator power, n, then there are n � m
zeros at infinity and vector z must be padded with (n�m) inf. errortf(num, den)
finds the steady-state error when the transfer function is expressed as the ratio of two
polynomials. These functions are demonstrated in Examples 5.6 and 5.7.

Example 5.6

Determine the step, ramp and parabolic error constants and the steady-state error for
the following transfer function.

G(s) =
10(s+ 4)

s(s+ 1)(s+ 2)(s+ 5)

The following commands

k=10;
z = [-4; inf; inf; inf];
p = [0; -1; -2; -5];
errorzp(z,p,k)

result in

System type is 1

Error Constants:

Kp Kv Ka

1 4 0

Steady-state Errors:

step Ramp Parabolic

0 0.25 1
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Example 5.7

Find the error constants and the steady-state error for the system shown in Figure 5.5.
The commands
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FIGURE 5.5
System for Example 5.7.

num = 10;
den = [1 14 50];
errortf(num, den)

result in

System type is 0

Error Constants:

Kp Kv Ka

0.2 0 0

Steady-state Errors:

step Ramp Parabolic

0.833 1 1



CHAPTER

6
ROOT-LOCUS
ANALYSIS
AND DESIGN

This chapter deals with the root-locus method developed by W. R. Evans. The root-
locus method enables us to find the closed-loop poles from the open-loop poles for all
the values of the gain of the open-loop transfer function. The root-locus of a system
is a plot of the roots of the system characteristic equation as the gain factor K is
varied. Therefore, the designer can select a suitable gain factor to achieve the desired
performance criteria. If the required performance cannot be achieved, a controller can
be added to the system to alter the root-locus in the required manner.
Given a transfer function of an open-loop control system, the Control System Toolbox
function rlocus(num, den ) produces a root-locus plot with the gain vector automati-
cally determined. If the open-loop system is defined in state space, we use rlocus(A,
B, C, D). rlocus(num, den, K) or rlocus(A, B, C, D, K) uses the user-supplied gain
vector K. If the above commands are invoked with the left hand arguments [r, K],
the matrix r and the gain vector K are returned, and we need to use plot(r, ’ . ’) to
obtain the plot. rlocus function is accurate, and we use it to obtain the root-locus.
The command axis(’equal’) will make the x- and y-axis scaling factor the same. The
command rlocfind finds the root locus gains for a given set of roots. [K, Poles] =
rlocfind(num, den) is used for interactive gain selection from the root locus plot of a
system generated by rlocus. rlocfind puts up a crosshair cursor in the graphics win-
dow which is used to select a pole location on an existing root locus. The root locus
gain associated with this point is returned in K and all the system poles for this gain
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are returned in POLES. A good knowledge of the characteristics of the root loci offers
insights into the effects of adding poles and zeros to the system transfer function. It is
important to know how to construct the root locus by hand, so we can design a simple
system and be able to understand and develop the computer-generated loci. Therefore,
the basic construction rules for sketching the root-locus are summarized below:

6.1 Root-Locus Method

Consider the feedback control system given in Figure 6.1.
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FIGURE 6.1
Control system for root-locus.

The closed-loop transfer function of this system is

T (s) =
C(s)

R(s)
=

KG(s)

1 +KG(s)H(s)
(6.1)

In general, the open-loop transfer function is given by

KG(s)H(s) =
K(s+ z1)(s+ z2) � � � (s+ zm)

(s+ p1)(s+ p2) � � � (s+ pn)
(6.2)

where m is the number of finite zeros and n is the number of finite poles of the loop
transfer function. If n > m, there are (n�m) zeros at infinity.

The characteristic equation of the closed-loop transfer function is

1 +KG(s)H(s) = 0 (6.3)

Therefore
(s+ p1)(s+ p2) � � � (s+ pn)

(s+ z1)(s+ z2) � � � (s+ zm)
= �K (6.4)

From (6.4), it follows that for a point in the s-plane to be on the root-locus, when
0 < K <1, it must satisfy the following two conditions.

K =
product of vector lengths from finite poles
product of vector lengths from finite zeros

(6.5)

andX
angles of zeros of G(s)H(s) �

X
angles of poles of G(s)H(s) = r(180)Æ;

where r = �1;�3;�5; � � � (6.6)
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6.2 Summary of General Rules for Constructing Root-Loci

1. Number of loci. For n > m, the number of loci, that is, the number of
branches of the root-locus, is equal to the number of poles of the open-loop
transfer function G(s)H(s). The root-locus is symmetrical with respect to the
real axis.

2. Starting and ending points. As K is increased from zero to infinity, the loci
of the closed-loop poles originate from the open-loop poles (K = 0), and
proceed toward and terminate at the open-loop zeros, (K !1). Zeros tend to
attract root-loci toward them and poles tend to repel them.

3. Root-locus segments on the real axis. For K > 0, root-loci occurs on a par-
ticular segment of the real axis if and only if there are an odd number of total
poles and zeros of the open-loop transfer function laying to the right of that
segment.

4. Imaginary axis intersections. Use Routh-Hurwitz criterion to determine j!-
axis crossings of the root-locus points. Both the gain K and the value of ! may
be found from the Routh array.

5. Asymptotes (For n 6= m ). For most systems of interest, n is greater than or
equal tom. For n > m there are (n�m) zeros at infinity, thus for 0 < K <1,
(n�m) root-locus ends at zeros at infinity.

Root-locus points are asymptotic to straight lines with angles given by

� =
r180Æ

n�m
; r = �1;�3;�5; � � � (6.7)

as s approaches infinity. Table 6.1 should be helpful.

Table 6.1 Angles of asymptotes

n�m Angles of asymptotes

0 no asymptotes
1 180Æ

2 �90Æ
3 180Æ, �60Æ
4 �45Æ, �135Æ

These straight lines emanate from a point s on the real axis specified by

�a =

P
poles of G(s)H(s) � P

zeros of G(s)H(s)

n�m
(6.8)
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6. Angles of departure and arrival. Assume a point s� arbitrarily near the poles
(for departure) or the zeros (for arrival) and then apply the fundamental angle
relationship, (6.6) to obtain

�d =
X
i

�zi �
X
i

�pi + r(180Æ) (6.9)

�a =
X
i

�pi �
X
i

�zi + r(180Æ) (6.10)

where r = �1;�3; � � �

7. Breakaway and re-entry points. These are points on the real axis where two
or more branches of the root-locus depart from or arrive at the real axis. Break-
away points may be determined by expressing the characteristic equation for
the gain K as a function of s, K = �1=G(s)H(s), and then solving for the
breakaway points s from

dK(s)

ds

����
s=sB

= 0 (6.11)

The real roots of this equation which satisfy rule 3 are the breakaway or re-entry
points. Root-loci for second-order systems occurs as straight lines, circles, or
segments thereof.

Example 6.1

Obtain the root-locus for K > 0 for the simple motor position servo system shown in
Figure 6.2.
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FIGURE 6.2
Control system for Example 6.1.

The open-loop transfer function is

KG(s)H(s) =
K

s(s+ 4)
=

K

s2 + 4s

The Control System Toolbox function rlocus(num, den, K) is used to obtain the
closed-loop root-locus for varying K .
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num=1;
den=[1 4 0];
rlocus(num, den),grid;
axis('equal')

The first statement overrides the automatic scaling, and the second statement produces
a graph with square aspect ratio. The results are shown in Figure 6.3.
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FIGURE 6.3
Root-locus for Example 6.1.

� The root-loci on the real axis are to the left of an odd number of finite poles and
zeros.

� n�m = 2 zeros at infinity.

� Two asymptotes with angles � = �90Æ.

� The asymptotes intersect on the real axis at

�a =
�4� 0

2
= �2

� Breakaway point on the real axis is given by

dK

ds
= � d

ds
(s2 + 4s) = 0 i.e. s = �2
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Example 6.2

Obtain the root-locus for K > 0 for a system whose open-loop transfer function is
given below.

KG(s)H(s) =
K

(s+ 1)(s+ 3)(s+ 4)
=

K

s3 + 8s2 + 19s+ 12

Statements written to obtain root-locus are similar to Example 6.1. The results are
given in Figure 6.4.
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FIGURE 6.4
Root-locus for Example 6.2.

� The root-loci on the real axis are to the left of an odd number of finite poles and
zeros.

� n�m = 3 zeros at infinity.

� Three asymptotes with angles � = 180Æ; �60Æ.

� The asymptotes intersect on the real axis at

�a =
�4� 3� 1

3
= �2:66

� Breakaway point on the real axis is given by

dK

ds
= � d

ds
(s3 + 8s2 + 19s+ 12) = 0
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The roots of this equation are s1 = �3:55 and s2 = �1:78, but s2 = �3:55
is not part of the root-locus for K > 0, therefore the breakaway point is at
s = �1:78.

� The Routh array gives the location of the j!-axis crossing.

1 19
8 12 +K s = �j4:36

140 �K

8
0 K = 140

Example 6.3

Obtain the root-locus for K > 0 for a system whose open-loop transfer function is
given below. The results are shown in Figure 6.5.

KG(s)H(s) =
K

(s+ 1)(s+ 3� j2)(s + 3 + j2)
=

K

s3 + 7s2 + 19s+ 13
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FIGURE 6.5
Root-locus for Example 6.3.

� The root-loci on the real axis are to the left of an odd number of poles and zeros.

� n�m = 3 zeros at infinity.

� Three asymptotes with angles � = 180Æ; �60Æ.
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� The asymptotes intersect on the real axis at

�a =
�3� 3� 1

3
= �2:33

� Breakaway point on the real axis is given by

dK

ds
= � d

ds
(s3 + 7s2 + 19s+ 13) = 0

Roots are s1; s2 = �2:33 � j0:94, which shows no intersection with the real
axis.

� The angles of departure from the complex poles are �d1 = 0 � (135 + 90) +
180 = �45Æ, and �d2 = 0� (45 + 90) + 180 = 45Æ.

� The Routh array gives the location of the j!-axis crossing and the value of K
at that point.

1 19
7 13 +K s = �j4:36

120 �K

7
0 K = 120

Example 6.4

Obtain the root-locus for K > 0 for a system whose open-loop transfer function is
given below. The results are shown in Figure 6.6.

KG(s)H(s) =
K

(s+ 1)(s+ 3� j1)(s + 3 + j1)
=

K

s3 + 7s2 + 16s+ 10

� The root-loci on the real axis are to the left of an odd number of poles and zeros.

� n�m = 3 zeros at infinity.

� Three asymptotes with angles � = 180Æ; �60Æ.

� The asymptotes intersect on the real axis at

�a =
�3� 3� 1

3
= �2:33

� Breakaway points on the real axis are given by

dK

ds
= � d

ds
(s3 + 7s2 + 16s+ 10) = 0

The roots of this equation are s1 = �2:0 and s2 = �2:66. Both points lie on
the root-locus for K > 0; they are the breakaway point and re-entry point.
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FIGURE 6.6
Root-locus for Example 6.4.

� The angles of departure from the complex poles are �d1 = 0� (153:43+90)+
180 = �63:43Æ , and �d2 = 0� (26:56 + 90) + 180 = 63:43Æ.

� The Routh array gives the location of the j!-axis crossing.

1 16
7 10 +K s = �j4

102�K

7
0 K = 102

Example 6.5

Obtain the root-locus for K > 0 for a system whose open-loop transfer function is
given below. The results are shown in Figure 6.7.

KG(s)H(s) =
K(s+ 5)

(s+ 1)(s+ 3)
=

K(s+ 5)

(s2 + 4s+ 3)

� The root-loci on the real axis are to the left of an odd number of finite poles and
zeros.

� n�m = 1 zero at infinity.

� One asymptote with angle � = 180Æ.
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FIGURE 6.7
Root-locus for Example 6.5.

� Breakaway points on the real axis are given by

dK

ds
= � d

ds

(s2 + 4s+ 3)

(s+ 5)
= 0

The roots of this equation are s1 = �2:17 and s2 = �7:83. Both points lie on
the root-locus for K > 0; therefore they are the breakaway point and re-entry
point, respectively.

� No intersection on the j!-axis for K > 0.

Example 6.6

Obtain the root-locus for K > 0 for a system whose open-loop transfer function is
given below. The results are shown in Figure 6.8.

KG(s)H(s) =
K(s+ 2)

(s+ 1)(s+ 3)(s+ 6)
=

K(s+ 2)

s3 + 10s2 + 27s+ 18

� The root-loci on the real axis are to the left of an odd number of finite poles and
zeros.

� n�m = 2 zeros at infinity.

� Two asymptotes with angles � = �90Æ.
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FIGURE 6.8
Root-locus for Example 6.6.

� The asymptotes intersect on the real axis at

�a =
(�1� 3� 6)� (�2)

2
= �4

� Breakaway point on the real axis is given by

dK

ds
= � d

ds

(s3 + 10s2 + 27s+ 18)

(s+ 2)
= 0

The roots of this equation are �4:36 and �1:8� j0:903; s = �4:36 lies on the
root-locus for K > 0, therefore this is the breakaway point.

� No intersection on the j! � axis for K > 0.

Example 6.7

Obtain the root-locus for K > 0 for a system whose open-loop transfer function is
given below. The results are shown in Figure 6.9.

KG(s)H(s) =
K(s+ 1� j1)(s+ 1 + j1)

(s+ 2)(s� 1� j1)(s� 1 + j1)
=
K(s2 + 2s+ 2)

(s3 � 2s+ 4)
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FIGURE 6.9
Root-locus for Example 6.7.

� The root-loci on the real axis are to the left of an odd number of finite poles and
zeros.

� n�m = 1 zero at infinity.

� One asymptote with angle � = 180Æ.

� No breakaway point on the real axis for K > 0.

� The angles of departure from the complex poles are �d1 = (0 + 45) � (90 +
18:43) + 180 = 116:56Æ , and �d2 = (�45 + 0) � (�90 � 18:43) + 180 =
�116:56Æ .

� The angles of arrival from the complex zeros are �a1 = (180 + 135 + 45) �
(90) + 180 = 90Æ, and �a2 = (180 + 45� 45)� (90) + 180 = �90Æ.

� The Routh array gives the location of the j!-axis crossing and the value of K
at that point.

1 2K � 2
K 2K + 4 s = �j1:86

2K2 � 4K � 4

K
0 K = 2:732
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Example 6.8

Obtain the root-locus for K > 0 for a system whose open-loop transfer function is
given below. The results are shown in Figure 6.10.

KG(s)H(s) =
K(s+ 2)(s+ 3)

s(s+ 1)(s+ 5)(s+ 6)
=

K(s2 + 5s+ 6)

s4 + 12s3 + 41s2 + 30s
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FIGURE 6.10
Root-locus for Example 6.8.

� The root-loci on the real axis are to the left of an odd number of finite poles and
zeros.

� n�m = 2 zeros at infinity.

� Two asymptotes with angles � = �90Æ.

� The asymptotes intersect on the real axis at

�a =
(0� 1� 5� 6)� (�2� 3)

2
= �3:5

� Breakaway points on the real axis are given by

dK

ds
= � d

ds

(s4 + 12s3 + 41s2 + 30s)

(s2 + 5s+ 6)
= 0
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The real roots of this equation are �0:586, �5:46 which are the breakaway
points and �2:247 which is the re-entry point.

� No intersection on the j!-axis for K > 0.

6.3 Root-Locus Design

The design specifications considered here are limited to those dealing with system
accuracy and time-domain performance specifications. These performance specifica-
tions can be defined in terms of the desirable location of the dominant closed-loop
poles.

The root-locus can be used to determine the value of the loop gain K , which re-
sults in a satisfactory closed-loop behavior. This is called the proportional controller
and provides gradual response to deviations from the set point. There are practical
limits as to how large the gain can be made. In fact, very high gains lead to instabili-
ties. If the root-locus plot is such that the desired performance cannot be achieved by
the adjustment of the gain, then it is necessary to reshape the root-loci by adding the
additional controller Gc(s) to the open-loop transfer function. Gc(s) must be chosen
so that the root-locus will pass through the proper region of the s-plane.

The proportional controller (P ) has no sense of time, and its action is deter-
mined by the present value of the error. An appropriate controller must make correc-
tions based on the past and future values. This can be accomplished by combining
proportional with integral action (PI) or proportional with derivative action (PD).
There is also a proportional-plus-integral-plus-derivative controller (PID).

Gc(s) = KP +
KI

s
+KDs (6.12)

The ideal integral and differential compensators require the use of active amplifiers.
Other compensators which can be realized with only passive network elements

are lead, lag, and lead-lag compensators. A first-order compensator having a single
zero and pole in its transfer function is

Gc(s) =
Kc(s+ z0)

s+ p0
(6.13)

Several functions are developed for the root-locus design. These are

Function Controller

[numopen, denopen, denclsd] = pcomp(num, den, �) Proportional
[numopen, denopen, denclsd] = phlead(num, den, s1) Phase-Lead
[numopen, denopen, denclsd] = phlag(num, den, �) Phase-Lag
[numopen, denopen, denclsd] = pdcomp(num, den, s1) PD
[numopen, denopen, denclsd] = picomp(num, den, s1) PI
[numopen, denopen, denclsd] = pidcomp(num, den, s1) PID
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Alternatively, the function [numopen, denopen, denclsd] = rldesign(num, den, s1)
allows the user to select any of the above controller designs. s1 = �+ j! is a desired
pole of the closed-loop transfer function, except for the pcomp and phlag controllers
where � , the damping ratio of the dominant poles, is substituted for s1. num and
den are row vectors of polynomial coefficients of the uncompensated open-loop plant
transfer function. The function phlead(num, den, s1) may also be used to design
phase-lag controllers. To do this, the desired pole location s1 must be assumed slightly
to the right of the uncompensated pole position. The function returns the open-loop
and closed-loop numerators and denominators of the compensated system transfer
function.

6.4 Gain Factor Compensation or P Controller

The proportional controller is a pure gain controller. The design is accomplished by
choosing a value of K0 which results in a satisfactory transient response. The devel-
oped function [numopen;denopen;denclsd] = rldesign(num;den; �) displays
six options for root-locus design. For a proportional controller, option 1 must be se-
lected. This option calls upon the function [numopen, denopen, denclsd] = pcomp(num,
den, �). The function computes the required gain K0, that will result in a desirable
damping ratio in the step response.

Example 6.9

Obtain the gain K0 of a proportional controller for the system with the open-loop
transfer function

Gp(s) =
1

s(s+ 1)(s+ 4)

such that the damping ratio of the dominant poles will be equal to 0:6. Obtain root-
locus, step response and the time-domain specifications for the compensated system.

The following commands

num=1;
den=[1 5 4 0];
zeta=0.6;
[numopen, denopen, denclsd]=rldesign(num,den,zeta); % compensated

% open-loop & closed-loop transfer function

subplot(221), rlocus(numopen, denopen), grid % Comp. Root-locus
axis('equal'), axis([-6 0 -3 3]), title('Root-locus')
subplot(222), step(numopen, denclsd), grid % Comp. step response
timespec(numopen, denclsd); % Time-domain specifications
subplot(111)

result in
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FIGURE 6.11
Root-locus plot and the step response for Example 6.9.

Compensator type Enter
Gain compensation 1
Phase-lead (or phase-lag ) 2
Phase-lag (Approximate K = K0=Kc) 3
PD Controller 4
PI Controller 5
PID Controller 6
To quit 0

Enter your choice ! 1

Controller gain: K0 = 2.05

Compensated open-loop
Transfer function:

2.05
-----------------
s^3 + 5 s^2 + 4 s

Compensated closed-loop
Transfer function:

2.05
------------------------
s^3 + 5 s^2 + 4 s + 2.05

Roots of the compensated characteristic equation:
-4.1563
-0.4219 + 0.5615i
-0.4219 - 0.5615i

Peak time = 5.855 Percent overshoot = 9.2856
Rise time = 2.702
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Settling time = 8.699

The results are shown in Figure 6.11.
From the above results the controller gain is K0 = 2:05. This gain will result in the
velocity error constant of Kv = 2:05=4 = 0:5125. Thus, the steady-state error due to
a ramp input is ess = 1=Kv = 1:95. The compensated closed-loop transfer function
is

C(s)

R(s)
=

2:05

s3 + 5s2 + 4s+ 2:05

6.5 Phase-Lead Design

In (6.13) the compensator is a high-pass filter or phase-lead if p0 > z0. The phase-lead
network contributes a positive angle to the root-locus angle criterion of (6.6) and tends
to shift the root-locus of the plant toward the left in the s-plane. The lead network acts
mainly to modify the dynamic response to raise bandwidth and to increase the speed
of response. In a sense, a lead network approximates derivative control. If p0 < z0,
the compensator is a low-pass filter or phase-lag. The phase-lag compensator adds a
negative angle to the angle criterion and tends to shift the root-locus to the right in the
s-plane. The compensator angle must be small to maintain the stability of the system.
The lag network is usually used to raise the low-frequency gain and thus to improve
the steady-state accuracy of the system. The lag network is an approximate integral
control.

The DC gain of the compensator is

a0 = Gc(0) =
Kcz0
p0

(6.14)

For a given desired location of a closed-loop pole s1, the design can be accomplished
by trial and error. Select a proper value of z0 and use the angle criterion of (6.6) to
determine p0. Then, the gain Kc is obtained by applying the magnitude criterion of
(6.5). Alternatively, if the compensator DC gain, a0 = (Kcz0)=p0, is specified, then
for a given location of the closed-loop pole

s1 =js1j 6 � (6.15)

z0 and p0 are obtained such that the equation

1 +Gc(s1)Gp(s1) = 0 (6.16)

is satisfied. It can be shown that the above parameters are found from the following
equations [12].

z0 =
a0
a1

; p0 =
1

b1
and Kc =

a0p0
z0

(6.17)
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where

a1 =
sin� + a0M sin(� �  )

js1jM sin 

b1 = �sin(� +  ) + a0M sin�

js1j sin (6.18)

where M and  are the magnitude and phase angle of the open-loop plant transfer
function evaluated at s1, i.e.,

Gp(s1) =M 6  (6.19)

For the case that  is either 0Æ or 180Æ, (6.18) is given by

a1 js1j cos � � b1 js1j
M

cos � � 1

M
+ a0 = 0 (6.20)

where the plus sign applies for  = 0Æ and the minus sign applies for  = 180Æ. For
this case the zero of the compensator must also be assigned.

Based on the above equations, the function [numopen, denopen, denclsd] =
phlead (num, den, s1) is developed for the phase-lead controller design. num and
den are the numerator and denominator of the polynomial coefficients of the open-
loop plant transfer function and s1 is the desired dominant closed-loop pole. The user
enters the compensator DC gain. The function obtains the controller transfer function
and roots of the compensated characteristic equation. Also, the function returns the
open-loop and closed-loop numerators and denominators of the compensated system
transfer function.

Example 6.10

The system of Example 6.9 whose open-loop transfer function is

Gp(s) =
1

s(s+ 1)(s+ 4)

is required to have a faster response and a smaller steady-state error due to a ramp in-
put. A phase-lead compensator is to be designed to meet the following specifications.

� Time constant � = 1=�!n = 0:6667 sec.

� Damping ratio � = 0:6.

� Steady-state error due to a unit ramp input ess = 0:5.

Obtain root-locus, step response, and the time-domain specifications for the compen-
sated system.

From the first two specifications �!n = 1=� = 1:5 and � = cos�1 0:6 = 53:13Æ.
Thus, the required closed-loop pole is s1 = �1:5+j2. The third specification requires

ess =
1

Kv
= 0:5
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or
Kv = 2

where

Kv = lim
s!0

s
Kc(s+ z0)

(s+ p0)

1

s(s+ 1)(s+ 4)
=
Kcz0
p0

1

4

Therefore, the compensator gain required is a0 = (kcz0)=p0 = 4 � 2 = 8. The
function [numopen, denopen, denclsd] = rldesign(num, den, s1) with option 2 is
used for the phase-lead design. The following commands

num=1;
den=[1 5 4 0];
j=sqrt(-1);
s1=-1.5+j*2;
[numopen, denopen, denclsd]=rldesign(num, den, s1); %compensated

% open-loop & closed-loop transfer function
subplot(2,2,1), rlocus(numopen, denopen), grid %Comp.Root-locus
subplot(2,2,2), step(numopen, denclsd), grid % Comp. step resp
timespec(numopen, denclsd); % Time-domain specifications
subplot(111)

Compensator type Enter
Gain compensation 1
Phase-lead (or phase-lag ) 2
Phase-lag (Approximate K = K0=Kc) 3
PD Controller 4
PI Controller 5
PID Controller 6
To quit 0

Enter your choice ! 2

Enter the compensator DC Gain ! 8

Gc(0) = 8, Gc = 82.2812(s + 1.11407)/(s + 11.4583)

Compensated open-loop
Transfer function:

82.28 s + 91.67
-------------------------------------
s^4 + 16.46 s^3 + 61.29 s^2 + 45.83 s

Compensated closed-loop
Transfer function:

82.28 s + 91.67
---------------------------------------------
s^4 + 16.46 s^3 + 61.29 s^2 + 128.1 s + 91.67
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Roots of the compensated characteristic equation:
-12.2623
-1.5000 + 2.0000i
-1.5000 - 2.0000i
-1.1961

Peak time = 1.613 Percent overshoot = 12.083
Rise time = 0.710
Settling time = 2.533

The results are shown in Figure 6.12.
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FIGURE 6.12
Root-locus plot and the step response for Example 6.10.

From the above results, the compensated close-loop transfer function is

C(s)

R(s)
=

82:28(s + 1:114)

s4 + 16:46s3 + 61:3s2 + 128:1s + 91:66

6.6 Phase-Lag Design

In the phase-lag control, the poles and zeros of the controller are placed very close
together, and the combination is located relatively close to the origin of the s-plane.
Thus, the root-loci in the compensated system are shifted only slightly from their orig-
inal locations. Hence, the phase-lag compensator is used when the system transient
response is satisfactory but requires a reduction in the steady-state error. The function
[numopen, denopen, denclsd] = phlead(num, den, s1) can be used for phase-lag
compensation by specifying the desired pole s1 slightly to the right of the uncom-
pensated pole location. Alternatively, phase-lag compensation can be obtained by as-
suming a DC gain of unity for the compensator based on the following approximate
method.
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a0 = Gc(0) =
Kcz0
p0

= 1 (6.21)

Therefore,
Kc =

p0
z0
; since p0 < z0 then Kc < 1 (6.22)

If K0 is the gain required for the desired closed-loop pole s1, then from (6.3)

K0 = � 1

Gp(s1)
(6.23)

If we place the pole and zero of the lag compensator very close to each other with
their magnitude much smaller than s1, then

Gc(s1) =
Kc(s+ z0)

s+ p0
' Kc (6.24)

Now, the gain K required to place a closed-loop pole at approximately s1 is given by

K = � 1

Gc(s1)Gp(s1)
' � 1

KcGp(s1)
' K0

Kc
(6.25)

Since Kc < 1, then K > K0. Next, select the compensator zero z0, arbitrarily small.
Then from (6.21) the compensator pole is

p0 = K0z0 (6.26)

The compensated system transfer function is then given by

KGpGc = KKc
s+ z0
s+ p0

Gp (6.27)

The function [numopen, denopen, denclsd] = phlag(num, den, �) is developed for
the phase-lag controller design, based on the above approximate criteria. num and
den are the numerator and denominator of the polynomial coefficients of the open-
loop plant transfer function, and � is the desired damping ratio of the dominant closed-
loop poles. The user is prompted to enter the gain K to realize the steady-state error
and the compensator zero, z0. The function obtains the controller transfer function
and roots of the compensated characteristic equation. Also, the function returns the
open-loop and closed-loop numerators and denominators of the compensated system
transfer function.

A lag-lead controller may be obtained by appropriately combining a lag and a
lead network in series.

Example 6.11

The system of Example 6.9 whose open-loop transfer function is

KGp(s) =
K

s(s+ 1)(s+ 4)
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is required to have approximately the same dominant closed-loop pole locations and
the same damping ratio (� = 0:6) as in Example 6.9. Design a phase-lag compensator
such that the steady-state error due to a unit ramp input, ess, will be equal to 0:125.

Obtain root-locus, step response, and the time-domain specifications for the
compensated system.

The gain K which results in ess = 0:125 is given by

Kv =
1

ess
= 8 = lim

s!0
s

K

s(s+ 1)(s+ 4)

Thus the gain to realize the steady-state error specification is K = 32.
The function [numopen;denopen;denclsd] = rldesign(num;den; �) with

option 3 is used to obtain the parameters of the phase-lag compensator. Choose a small
value for the compensator zero, e.g., z0 = 0:1.
The following commands

num=1;
den=[1 5 4 0];
zeta=0.6;
[numopen, denopen, denclsd]=rldesign(num,den,zeta); % compensated

% open-loop & closed-loop transfer function
subplot(221), rlocus(numopen, denopen), grid % Comp. Root-locus
subplot(222), step(numopen, denclsd), grid % Comp. step response
timespec(numopen, denclsd); % Time-domain specifications
subplot(111)

result in

Compensator type Enter
Gain compensation 1
Phase-lead (or phase-lag ) 2
Phase-lag (Approximate K = K0=Kc) 3
PD Controller 4
PI Controller 5
PID Controller 6
To quit 0

Enter your choice ! 3

Enter gain K required for the steady-state
error specification ! 32
Enter magnitude of the compensator zero ! 0.1

Gain for the desired closed-loop poles = 2.05
Gain for the desired steady-state response K = 32

Gc(0) = 1, Gc = 0.0640625(s + 0.1)/(s + 0.00640625)



126 6. Root-Locus Analysis and Design

Compensated open-loop
Transfer function:

2.05 s + 0.205
---------------------------------------
s^4 + 5.006 s^3 + 4.032 s^2 + 0.02562 s

Compensated closed-loop
Transfer function:

2.05 s + 0.205
---------------------------------------------
s^4 + 5.006 s^3 + 4.032 s^2 + 2.076 s + 0.205

Roots of the compensated characteristic equation:
-4.1530
-0.3646 + 0.5142i
-0.3646 - 0.5142i
-0.1242
Peak time = 6.037 Percent overshoot = 28.194
Rise time = 2.334
Settling time = 22.054

The results are shown in Figure 6.13. We can see that the complex poles are located
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FIGURE 6.13
Root-locus plot and the step response for Example 6.11.

approximately in the same location as in Example 6.9. The steady-state error is greatly
reduced, but the percent overshoot is increased. The compensated closed-loop transfer
function is

C(s)

R(s)
=

2:05(s + 0:1)

s4 + 5:006s3 + 4:032s2 + 2:075s + 0:205
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6.7 PID Design

One of the most common controllers available commercially is the PID controller.
Different processes are suited to different combinations of proportional, integral, and
derivative control. The control engineer’s task is to adjust the three gain factors to
arrive at an acceptable degree of error reduction simultaneously with acceptable dy-
namic response. For a desired location of the closed-loop pole s1, as given by (6.15),
the following equations [12] are obtained to satisfy (6.16).

KP =
� sin(� +  )

M sin�
� 2KI cos �

js1j

KD =
sin 

js1jM sin�
+

KI

js1j2
(6.28)

For PD or PI controllers, the appropriate gain is set to zero. The above equations
can be used only for the complex pole s1. For the case that s1 is real, the zero of
the PD controller (z0 = KP =KD) and the zero of the PI controller (z0 = KI=KP )
are specified and the corresponding gains to satisfy angle and magnitude criteria are
obtained accordingly. For the PID design, the value of KI to achieve a desired steady-
state error is specified. Again, (6.28) is applied only for the complex pole s1.

Based on the above equations, three functions called [numopen, denopen, den-
clsd] = pdcomp(num, den, s1), [numopen, denopen, denclsd] = picomp(num, den,
s1) and [numopen, denopen, denclsd] = pidcomp(num, den, s1) are written for the
PID controller design. num and den are the numerator and denominator of the poly-
nomial coefficients of the open-loop plant transfer function and s1 is the desired dom-
inant closed-loop pole. The function obtains the controller transfer function and roots
of the compensated characteristic equation. Also, the function returns the open-loop
and closed-loop numerators and denominators of the compensated system transfer
function.

6.7.1 PD Controller

Here both the error and its derivative are used for control, and the compensator transfer
function is

Gc(s) = KP +KDs = KD

�
s+

KP

KD

�
(6.29)

From above, it can be seen that the PD controller is equivalent to the addition of a
simple zero at s = �KP =KD to the open-loop transfer function which improves
the transient response. From a different point of view, the PD controller may also be
used to improve the steady-state error, because it anticipates large errors and attempts
corrective action before they occur. The function [numopen, denopen, denclsd] =
rldesign(num, den, s1) with option 4 is used for the PD controller design. Its use is
demonstrated in the following example.
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Example 6.12

For the system of Example 6.9, design a PD controller to place the dominant closed-
loop poles at the same location as in Example 6.10, i.e., s1 = �1:5 � j2. Obtain the
time-domain specifications for the compensated system.

The following commands

num=1;
den=[1 5 4 0];
j=sqrt(-1);
s1=-1.5+j*2;
[numopen, denopen, denclsd]=rldesign(num,den,s1); % Compensated

% open-loop & closed-loop transfer function
timespec(numopen, denclsd); % Time-domain specifications

result in

Compensator type Enter

Gain compensation 1
Phase-lead (or phase-lag ) 2
Phase-lag (Approximate K = K0=Kc) 3
PD Controller 4
PI Controller 5
PID Controller 6
To quit 0

Enter your choice ! 4

Gc = 12.5 + 8.25s

Compensated open-loop
Transfer function:
8.25 s + 12.5

-----------------
s^3 + 5 s^2 + 4 s

Compensated closed-loop
Transfer function:

8.25 s + 12.5
----------------------------
s^3 + 5 s^2 + 12.25 s + 12.5

Roots of the compensated characteristic equation:
-1.5000 + 2.0000i
-1.5000 - 2.0000i
-2.0000

Peak time = 1.393 Percent overshoot = 17.237
Rise time = 0.613
Settling time = 2.373
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Thus the compensated open-loop transfer function is

GpGc =
8:25s+ 12:5

s3 + 5s2 + 4s

The steady-state error due to a ramp input is

ess =
1

kv
=

4

12:5
= 0:32

We have approximately the same speed of response, but slightly higher percent over-
shoot compared to the phase-lead design of Example 6.10.

6.7.2 PI Controller

The integral of the error as well as the error itself is used for control, and the compen-
sator transfer function is

Gc(s) = KP +
KI

s
=
KP (s+KI=KP )

s
(6.30)

The PI controller is common in process control or regulating systems. Integral
control bases its corrective action on the cumulative error integrated over time. The
controller increases the type of system by 1 and is used to reduce the steady-state
errors. The function [numopen, denopen, denclsd] = rldesign(num, den, s1) with
option 5 is used for the PI controller design. It is demonstrated in the following exam-
ple.

Example 6.13

For the system of Example 6.9, design a PI controller that places the dominant closed-
loop poles at the same location as in the phase-lag design of Example 6.11, i.e., s1 =
�0:3646 + j0:5142.

The following commands

num = 1; den = [1 5 4 0];
s1 = -.3646+j*.5142;
[numopen, denopen, denclsd]=rldesign(num,den,s1);
timespec(numopen, denclsd); % Time-domain specifications.

result in

Compensator type Enter

Gain compensation 1
Phase-lead (or phase-lag ) 2
Phase-lag (Approximate K = K0=Kc) 3
PD Controller 4
PI Controller 5
PID Controller 6
To quit 0
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Enter your choice ! 5

Gc = 2.05308 + 0.194057/s

Row vectors of polynomial coefficients of the compensated
system:

Open-loop num. 0 0 0 2.053 0.194
Open-loop den. 1 5 4 0 0
Closed-loop den 1 5 4 2.053 0.194

Roots of the compensated characteristic equation:
-4.1532
-0.3646 + 0.5142i
-0.3646 - 0.5142i
-0.1176

Peak time = 6.035 Percent overshoot = 28.70
Rise time = 2.295
Settling time = 23.12

Thus the compensated open-loop transfer function is

GpGc =
2:053s + 0:194

s2(s2 + 5s+ 4)

The PI controller increases the system type by 1. That is, we have a type 2 system
and the steady-state error due to a ramp input is zero. Speed of response and percent
overshoot are almost the same as the phase-lag design of Example 6.11.

6.7.3 PID Controller

The PID controller is used to improve the dynamic response as well as to reduce
or eliminate the steady-state error. The function [numopen, denopen, denclsd] =
rldesign(num, den, s1) with option 6 is used for the PID controller design. Its use is
demonstrated in the following example.

Example 6.14

For the system of Example 6.9, design a PID controller to place the dominant closed-
loop poles at the same location as in Example 6.10, i.e., s1 = �1:5 � j2. Obtain the
time-domain specifications for the compensated system.

The following commands

num = 1; den = [1 5 4 0];
s1=-1.5+j*2;
[numopen, denopen, denclsd]=rldesign(num,den,s1); %Returns
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% compensated open-loop & closed-loop
% transfer function

timespec(numopen, denclsd); % Time-domain specifications

result in

Compensator type Enter

Gain compensation 1
Phase-lead (or phase-lag ) 2
Phase-lag (Approximate K = K0=Kc) 3
PD Controller 4
PI Controller 5
PID Controller 6
To quit 0

Enter your choice ! 6
Enter the integrator gain KI ! 0.1

Gc = 12.548 + 0.1/s + 8.266s

Compensated open-loop
Transfer function:
8.266 s^2 + 12.55 s + 0.1
-------------------------

s^4 + 5 s^3 + 4 s^2

Compensated closed-loop
Transfer function:

8.266 s^2 + 12.55 s + 0.1
---------------------------------------
s^4 + 5 s^3 + 12.27 s^2 + 12.55 s + 0.1

Roots of the compensated characteristic equation:
-1.5000 + 2.0000i
-1.5000 - 2.0000i
-1.9920
-0.0080

Peak time = 1.393 Percent overshoot = 17.555
Rise time = 0.613
Settling time = 2.400

Thus the compensated open-loop transfer function is

GpGc =
8:266s2 + 12:55s + 0:1

s2(s2 + 5s+ 4)

The PID controller increases the system type by 1. That is, we have a type 2 system
and the steady-state error due to a ramp input is zero. The transient response is also
improved.



132 6. Root-Locus Analysis and Design

6.8 Minor-Loop Feedback Control

The controllers discussed in the preceding section are placed in cascade (series) with
the system to be controlled. Another technique is to place the compensator in a minor
feedback loop. The scheme is called minor-loop feedback compensation or paral-
lel compensation. The selection of the compensation scheme depends largely on the
control system, power level of the available signals, and the required design specifi-
cations. Feedback compensation is used to improve the system’s tracking of a desired
input and to yield a system that is less sensitive to disturbances and parameter varia-
tions. Generally, an amplifier may not be necessary since the controller is placed in a
minor loop which is at a higher power level than cascade compensation.

The feedback compensation technique is primarily concerned with the addition
of rate or acceleration feedback. In general, the PID controller or the phase-lead and
phase-lag controllers discussed earlier can all be applied as minor-loop feedback con-
trollers.

6.9 Rate Feedback or Tachometer-Feedback Control

The most common example of feedback compensation is rate feedback. The rate sig-
nal is commonly implemented with a tachometer. The rate feedback is used to damp
out oscillations and it is usually used with a unity feedback as shown in Figure 6.14.
The effects of rate feedback are similar to those of a cascade lead controller. It there-
fore has the effect of moving the root-locus to the left and improving the time re-
sponse.
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FIGURE 6.14
Minor-loop feedback control with tachometer.

The closed-loop transfer function of the system is

C(s)

R(s)
=

KaGp(s)

1 + (Ka +Kts)Gp(s)
(6.31)

and the characteristic equation is

1 +H(s)Gp(s) = 0 (6.32)

where H(s) = Ka +Kts is the same as the PD controller. For a desired location of
the closed-loop pole s1 as given by (6.15), the following equations are obtained to
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satisfy (6.32).

Ka =
� sin(� +  )

M sin�

Kt =
sin 

js1jM sin�
(6.33)

where M and  are the magnitude and phase angle of the open-loop plant transfer
function evaluated at s1. js1j and � are the magnitude and phase angle of the desired
closed-loop pole.

In the rate feedback, no zero appears in the closed-loop transfer function. There-
fore, the closed-loop step response will be more sluggish than the cascade PD con-
troller.

Based on the above equations, function [numopen, denopen, denclsd] = tachfdbk
(num, den, s1) is developed for the minor-loop feedback control with tachometer. Al-
ternatively, the function [numopen, denopen, denclsd] = fbdesign
(num, den, s1) with option 1 can be used for this design. s1 = � + j! is a de-
sired pole of the closed-loop transfer function. num and den are the row vectors of
polynomial coefficients of the uncompensated open-loop plant transfer function.

Example 6.15

Determine the step response and the time-domain specifications for the system shown
in Figure 6.15.

.......................................................................
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FIGURE 6.15
Control system for Example 6.15.

The closed-loop transfer function is given by

C(s)

R(s)
=

64

s2 + 4s+ 64

The closed-loop poles are located at �2 + j7:746 with a damping ratio of 0:25 and a
time constant of � = 1=�!n = 2 sec. The commands

num = 64; denc = [1 4 64]; timespec(num, denc);

result in the following time-domain specifications:

Peak time = 0.405 Percent overshoot = 44.339
Rise time = 0.160
Settling time = 1.760
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The response is highly oscillatory with an overshoot of 44:4 percent.
A tachometer-feedback control, as shown in Figure 6.14, is used to improve the

time response. Determine values ofKa andKt which result in a system design having
dominant poles with time-constant � = 0:125 sec. and a damping ratio � = 0:707.
Obtain the time-domain specifications and plot the step response of the uncompen-
sated and the compensated systems.
From the above specifications, �!n = 1=� = 8 and � = cos�1 0:707 = 45Æ. Thus
the required closed-loop pole is s1 = �8 + j8. The function [numopen, denopen,
denclsd] = fbdesign(num, den, s1) with option 1 is used for the rate feedback com-
pensation.

The following commands

num=64;
den=[1 4 0];dencu=[1 4 64];%uncompensated closed-loop denominator
s1=-8+j*8;
[numopen, denopen, denclsd]=fbdesign(num,den,s1); % compensated

% open-loop & closed-loop transfer function
t=0:.02:2;
c1=step(num, dencu, t); % Uncompensated system step response
timespec(num, dencu); % uncompensated time-domain specifications

c2=step(numopen, denclsd, t); % Compensated system step response
timespec(numopen,denclsd);%Compensated time-domain specifications
plot(t, c1,t, c2); xlabel('t, sec.'), ylabel('c(t)'), grid
text(.60, 1.2, 'Uncompensated response')
text(.205, 0.75, 'Compensated response')

result in

Compensator type Enter

Rate feedback 1
Minor-loop design with passive network 2
To quit 0

Enter your choice ! 1

Ka = 2, Kt = 0.1875 s

Compensated open-loop
Transfer function:

128
---------
s^2 + 4 s

Compensated closed-loop
Transfer function:

128
----------------
s^2 + 16 s + 128
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Roots of the compensated characteristic equation:
-8.0000 + 8.0000i
-8.0000 - 8.0000i

Peak time = 0.392 Percent overshoot = 4.321
Rise time = 0.190
Settling time = 0.526

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

t, sec.

c(
t)

Uncompensated response

Compensated response

FIGURE 6.16
Unit step response of the system in Example 6.15.

The results are shown in Figure 6.16.

6.10 Feedback Compensation using Passive Elements

To minimize cost, instead of using a tachometer, an RC network with phase-lead
characteristics can be used in the minor feedback loop for compensation as shown in
Figure 6.17.

The controller H(s) contains a simple RC network as shown in Figure 6.17 (b)
with a transfer function given by

H(s) =
a1s

b1s+ 1
(6.34)
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FIGURE 6.17
Feedback compensation using passive elements.

The closed-loop characteristic equation of the system in Figure 6.17 is

1 +Gp(s) +H(s)Gp(s) = 0 (6.35)

For a given location of the closed-loop pole

s1 = js1j 6 � (6.36)

a1 and b1 are obtained such that (6.35) rewritten as

H(s)Gp(s) = �[1 +Gp(s)] = K 6 
 (6.37)

is satisfied. It can be shown that the above parameters are found from the following
equations:

a1 =
sin�

js1jM sin �

b1 = �sin(� � �)

js1j sin � (6.38)

where M = jGp(s1)j =K ,  = 6 Gp(s1), and � = 
 �  .
Based on the above equations, function [numopen, denopen, denclsd] = pnetfdbk

(num, den, s1) is developed for the minor-loop feedback control with a passive net-
work. The function [numopen, denopen, denclsd] = fbdesign(num, den, s1) with
option 2 can be used for this design. s1 = � + j! is a desired pole of the closed-loop
transfer function. num and den are the row vectors of polynomial coefficients of the
uncompensated open-loop plant transfer function.

Example 6.16

For the system of Example 6.15, instead of placing the tachometer in the minor-loop,
use the passive network controller shown in Figure 6.17. Determine the controller
parameters to place the dominant closed-loop poles at the same location as in Example
6.15, i.e., s1 = �8 + j8. Obtain the time-domain specifications for the compensated
system.

The function [numopen, denopen, denclsd] = fbdesign(num, den, s1) with
option 2 is used.

The following commands
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num = 64;
den = [1 4 0];
s1 = -8+j*8;
[numopen, denopen, denclsd]=fbdesign(num,den,s1);

% Returns compensated open-loop &
% closed-loop transfer function

t = 0:.02:2;
timespec(numopen,denclsd); % Time-domain specifications
c = step(numopen, denclsd, t); % Compensated system
plot(t, c); title('Step response'), grid % step response

result in

Compensator type Enter
Rate feedback 1
Minor-loop design with passive network 2
To quit 0

Enter your choice ! 2

Gc = 2.5s / (s + 24)

Compensated open-loop
Transfer function:

64 s + 1536
--------------------
s^3 + 28 s^2 + 256 s

Compensated closed-loop
Transfer function:

64 s + 1536
---------------------------
s^3 + 28 s^2 + 320 s + 1536

Roots of the compensated characteristic equation:
-12.0000
-8.0000 + 8.0000i
-8.0000 - 8.0000i

Peak time = 0.437 hspace1.5cm Percent overshoot = 2.014
Rise time = 0.237
Settling time = 0.494

6.11 GUI Program for Root-locus Design

A graphical user interface program (GUI) has been developed for the design of a
first-order controller in the forward path of a closed-loop control system. This GUI
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program designs the following controllers: Proportional, phase-lag, phase-lead, PD,
PI, and PID controllers. To run the GUI controller design program at the MATLAB
prompt type rldesigngui.

Example 6.17

Consider the system of Example 6.10 whose open-loop transfer function is

Gp(s) =
1

s(s+ 1)(s+ 4)

Use the rldesigngui program to design a phase lead controller to meet the following
specifications:

� Time constant � = 1=�!n = 0:6667 sec.

� Damping ratio � = 0:6.

� Steady-state error due to a unit ramp input ess = 0:5.

From the first two specifications �!n = 1=� = 1:5 and � = cos�1 0:6 = 53:13Æ.
Thus, the required closed-loop pole is s1 = �1:5+j2. The third specification requires

ess =
1

Kv
= 0:5

or
Kv = 2

where

Kv = lim
s!0

s
Kc(s+ z0)

(s+ p0)

1

s(s+ 1)(s+ 4)
=
Kcz0
p0

1

4

Therefore, the compensator gain required is a0 = (kcz0)=p0 = 4� 2 = 8.
At the MATLAB prompt type

>> rldesigngui

The following graphic window is displayed.
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G
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Plant

H(s)

Sensor

−

R(s) C(s)

The plant transfer function is specified and clicking on the phase lead controller but-
ton, the following graphic window is displayed as shown in the next page. The desired
dominant closed-loop poles are entered. Pressing the FindGc(s) button, the controller
transfer function, and the compensated open loop and closed loop transfer functions
are obtained as shown in this figure.
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−10 −5 0
−6

−4

−2

0

2

4

6

Real Axis

Im
ag

 A
xi

s

Uncompensated system root−locus

Controller: G
c
(s) = 82.2813(s + 1.1141/(s + 11.4583)

Compensated Open−loop TF

KG
c
G

p
H(s) = 

82.2813s + 91.6667
___________________________________

1s4 + 16.4583s3 + 61.2917s2 + 45.8333s + 0

Compensated Closed−loop TF

 C(s)
____            = 
 R(s)

82.2813s + 91.6667__________________________________________________

1s4 + 16.4583s3 + 61.2917s2 + 128.1146s + 91.6667
Roots of the Characteristic Equation:

−12.2623+0i                    −1.5+2i                    −1.5−2i                −1.19608+0i           

Pressing the Compensated System Responses Button, various responses can be ob-
tained. The step response is shown in Figure 6.18. Right-clicking on the response
opens a dialog box for the response characteristics. In this case the time-domain per-
formance characteristics such as the response rise time, peak value , peak time and
settling time are obtained as marked on the plot.
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CHAPTER

7
FREQUENCY RESPONSE
ANALYSIS AND DESIGN

The frequency response of a system is the steady-state response of the system to a si-
nusoidal input signal. The frequency response method and the root-locus method are
simply two different ways of applying the same basic principles of analysis. These
methods supplement each other, and in many practical design problems, both tech-
niques are employed. One advantage of the frequency response method is that the
transfer function of a system can be determined experimentally by frequency response
tests. Furthermore, the design of a system in the frequency domain provides the de-
signer with control over the system bandwidth and over the effect of noise and distur-
bance on the system response.

In this chapter polar plot and Bode plot of the open-loop transfer function, gain
margin, and phase margin specifications are obtained using MATLAB Control Sys-
tem Toolbox functions. The relative stability of the closed-loop system based on the
Nyquist criterion are examined. Closed-loop frequency response, the peak amplitude,
and bandwidth are also obtained. In addition, several functions developed for the con-
trol system design in frequency domain are demonstrated.

7.1 Frequency Response

The response of a linear time-invariant system to sinusoidal input r(t) = A sin(!t) is
given by

c(t) = A jG(j!)j sin[!t+ �(!)] (7.1)

142
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where the transfer function G(j!) is obtained by substituting j! for s in the expres-
sion for G(s). The resulting transfer function may be written in polar form as

G(j!) = jG(j!)j 6 �(!) (7.2)

Alternatively, the transfer function can be represented in rectangular complex
form as

G(j!) = ReG(j!) + jImG(j!) = R(j!) + jX(j!) (7.3)

The most common graphical representation of a frequency response function is the
Bode plot. Other representations of sinusoidal transfer functions are polar plot and
log-magnitude versus phase plot.

7.1.1 Bode Plot

The Bode plot consists of two graphs plotted on semi-log paper with linear vertical
scales and logarithmic horizontal scales. The first graph is a plot of the magnitude
of a frequency response function G(j!) in decibels versus the logarithm of !, the
frequency. The second graph of a Bode plot shows the phase function �(!) versus
the logarithm of !. The logarithmic representation is useful in that it shows both
the low- and high-frequency characteristics of the transfer function in one diagram.
Furthermore, the frequency response of a system may be approximated by a series of
straight line segments.

Given a transfer function of a system, the Control System Toolbox function
bode(num, den) produces the frequency response plot with the frequency vector au-
tomatically determined. If the system is defined in state space, we use bode(A, B, C,
D). bode(num, den, !) or bode(A, B, C, D, iu, !) uses the user-supplied frequency
vector !. The scalar iu specifies which input is to be used for the frequency response.
If the above commands are invoked with the left-hand arguments [mag, phase, !],
the frequency response of the system in the matrices mag, phase, and ! are returned,
and we need to use plot or semilogx functions to obtain the plot.

Example 7.1

Obtain the Bode plot for the unity feedback control system with the open-loop transfer
function

GH(s) =
K

s(s+ 2)(s+ 50)
=

K

s3 + 52s2 + 100s

for K = 1300. We use the following commands

num=1300;
den=[1 52 100 0];
bode(num, den), grid % Obtains the frequency response plots

% Magnitude in dB and phase angle in degrees

The resulting plot is shown in Figure 7.1. The commands used for displaying text
(!gc; !pc; G:M:; P:M:) on the graphs are not included in the above statements.



144 7. Frequency Response Analysis and Design

10
−1

10
0

10
1

10
2

−100

−50

0

50

G.M.

ω
gc

ω
pc

Amplitude response (dB) versus ω

10
−1

10
0

10
1

10
2

−250

−200

−150

−100

−50

P.M.

ω
gc

ω
pc

Phase angle response (degree) versus ω

FIGURE 7.1
Bode plot of Example 7.1.

7.1.2 Polar Plot

A polar plot, also called the Nyquist plot, is a graph of ImG(j!) versus ReG(j!) with
! varying from �1 to +1. The polar plot may be directly graphed from sinusoidal
steady-state measurements on the components of the open-loop transfer function.

The MATLAB Control System Toolbox function [Re, Im]= nyquist(num, den,
!) returns the real and imaginary parts of a transfer function for the specified range
of frequencies.

Example 7.2

Obtain the polar plot for the system of Example 7.1 with the gain K = 1300 and K =
5200.

The following commands

k1=1300; k2=5200; w=8:1:80;
num1=[k1]; num2=[k2];
den=[1 52 100 0];
[Re1,Im1]=nyquist(num1,den,w);
[Re2,Im2]=nyquist(num2,den,w);
subplot(2,2,1),plot(Re1,Im1), title('Nyquist plot, K = 1300')
grid
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subplot(2,2,2),plot(Re2,Im2), title('Nyquist plot, K = 5200')
grid, subplot(111)

produce the graph shown in Figure 7.2.
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FIGURE 7.2
Polar plot of Example 7.1.

7.1.3 Log-magnitude versus Phase Plot

The log-magnitude versus phase plot shows the logarithmic magnitude in decibels
versus phase angle for a frequency range of interest, usually plotted on a Nichols
chart. The Nichols chart contains lines of constant closed-loop magnitude and phase,
showing the relationship between the open-loop and closed-loop frequency response.
In Example 7.1, the addition of statement plot(dB, phase) will produce the log-
magnitude versus phase plot.

7.2 Relative Stability

The closed-loop transfer function of a control system is given by

T (s) =
C(s)

R(s)
=

KG(s)

1 +KGH(s)
(7.4)

For BIBO stability, poles of T (s) must lie in the left-half s-plane. Since zeros
of 1 + KGH(s) are poles of T (s), the system is BIBO stable when the roots of
the characteristic equation 1 + KGH(s) lie in the left-half s-plane. The root-locus,
which is the locus of the roots of the characteristic equation as K varies from zero to
infinity, and is covered in Chapter 6. All points on the root-locus satisfy the following
conditions:

jKGH(s)j= 1 and 6 GH(s) = �180Æ (7.5)

The root-locus for Example 7.1 is shown in Figure 7.3. As K is increased, the
system becomes marginally stable when the real parts of the dominant complex roots
are zero. This corresponds to the intersection of the root-loci with j!-axis; that is,
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when s = j!. For this system, the critical gain for marginal stability is Kc = 5200.
The polar plot of the above system for three values of K is also shown in Figure 7.3.
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FIGURE 7.3
Root-locus and polar plot for three values of gain.

The intersection of the polar plot with the negative real axis has a phase angle of
�180Æ. The frequency !pc corresponding to this point is known as the phase crossover
frequency. In addition, as the loop gain is increased, the polar plot crossing (�1; 0)
point has the property described by

jKcGH(j!pc)j= 1 and 6 GH(j!pc) = �180Æ (7.6)

The closed-loop response becomes marginally stable when the frequency response
magnitude is unity and its phase angle is �180Æ. The frequency at which the polar
plot intersect (�1; 0) point is the same frequency that the root-locus crosses the j!-
axis. For a still larger value of K , the polar plot will enclose the (�1; 0) point, and
the system is unstable.

Thus, the system is stable if

jKGH(j!)j< 1 at 6 GH(j!pc) = �180Æ (7.7)

The proximity of the KGH(j!) plot in the polar coordinates to the (�1; 0) point
gives an indication of the stability of the closed-loop system.

7.2.1 Gain and Phase Margins

Gain margin and phase margin are two common design criteria related to the open-
loop frequency response. The gain margin is the factor by which the gain of a stable
system must be increased for the polar plot to pass through the (�1; 0) point. The
gain margin is defined as

G:M: =
Kc

K
(7.8)

where Kc is the critical loop gain for marginal stability and K is the actual loop gain.
The above ratio can be written as

G:M: =
Kc jGH(j!pc)j
K jGH(j!pc)j =

1

K jGH(!pc)j =
1

a
(7.9)
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In terms of decibels the gain margin is

G:M:dB = 20 log10(G:M:) = �20 log10 jKGH(j!pc)j= �20 log10 a (7.10)

The gain margin is simply the factor by which K must be changed in order to
render the system unstable. In this example, with K = 1300, the G:M: = 1=a =
1=0:25 = 4, or G:M:dB = 20 log10 4 = 12:04 dB. Thus, the critical loop gain is
Kc = (G:M:)K = (4)1300 = 5200. For K = 10400, G:M: = 1=2 = 0:5 =
�6:02 dB and the system is unstable.

The gain margin alone is inadequate to indicate relative stability when system
parameters affecting the phase of GH(j!) are subject to variation. Another measure
called phase margin is required to indicate the degree of stability. Let !gc, known
as the gain crossover frequency, be the frequency at which the open-loop frequency
response magnitude is unity. The phase margin is the angle in degrees through which
the polar plot must be rotated about the origin in order to intersect the (�1; 0) point.
The phase margin is given by

P:M: = 6 GH(j!gc)� (�180Æ) (7.11)

In this example forK = 1300, !gc = 4:89 and P:M: = �163:36�(�180) = 16:64Æ.
The gain and phase margins along with !pc and !gc are obtained more easily

from the Bode plot. The phase margin may be read directly off the Bode plot at the
frequency which the amplitude curve crosses the 0 dB line [!gc = 4:89], and the
gain margin may be read (in decibels) at the frequency at which the phase angle curve
crosses the �180Æ line [!pc = 10]. From Figure 7.1, these are G:M: = 12:04 dB and
P:M: = 16:64Æ.

For satisfactory performance, the phase margin should be between 30Æ and 60Æ,
and the gain margin should be greater than 6 dB.

The MATLAB Control System Toolbox function [Gm, Pm, !pc , !gc ] = mar-
gin(mag, phase !) can be used with bode function for evaluation of gain and phase
margins, !pc and !gc.

Example 7.3

In Example 7.1 for K = 1300, evaluate the gain margin, !pc , phase margin, and !gc.
The following commands

k = 1300; num = [k]; den = [1 52 100 0]; w = .1:.1:20;
[mag,phase] = bode(num,den,w);
[Gm, Pm, wpc,wgc] = margin(mag, phase, w);
fprintf('Gain Margin = %7.3g',Gm),fprintf('..
Gain crossover w = %7.3g',wgc)
fprintf('Phase Margin = %7.3g',Pm),fprintf('..
Phase crossover w = %7.3g',wpc)

result in

Gain Margin = 4 Gain crossover w = 4.89
Phase Margin = 16.6 Phase crossover w = 10



148 7. Frequency Response Analysis and Design

7.2.2 Nyquist Stability Criterion

The Nyquist stability criterion provides a convenient method for finding the number
of zeros of 1 + GH(s) in the right-half s-plane directly from the Nyquist plot of
GH(s). The Nyquist stability criterion is defined in terms of the (�1; 0) point on the
Nyquist plot or the zero-dB, 180Æ point on the Bode plot. The Nyquist criterion is
based upon a theorem of complex variable mathematics due to Cauchy. The Nyquist
diagram is obtained by mapping the Nyquist path into the complex plane via the
mapping function GH(s). The Nyquist path is chosen so that it encircles the entire
right-half s-plane. When the s-plane locus is the Nyquist path, the Nyquist stability
criterion is given by

Z = N + P (7.12)

where

P = number of poles of GH(s) in the right-half s-plane,

N = number of clockwise encirclements of (�1; 0) point by the Nyquist diagram,

Z = number of zeros of 1 +GH(s) in the right-half s-plane.

For the closed-loop system to be stable, Z must be zero, that is

N = �P (7.13)

7.2.3 Simplified Nyquist Criterion

If the open-loop transfer function GH(s) does not have poles in the right-half s-plane
(P = 0), it is not necessary to plot the complete Nyquist diagram; the polar plot for
! increasing from 0+ to 1 is sufficient. Such an open-loop transfer function is called
minimum-phase transfer function. For minimum-phase open-loop transfer functions
the closed-loop system is stable if and only if the polar plot lies to the right of (�1; 0)
point. For a minimum-phase open-loop transfer function the criterion is defined in
terms of the polar plot crossing with respect to (�1; 0) point as follows:

Right of (�1; 0) stable !pc > !gc jGH(j!)j< 1, G:M:dB > 0; P:M: > 0Æ

On (�1; 0) marg. stable !pc = !gc jGH(j!)j= 1, G:M:dB = 0; P:M: = 0Æ

Left of (�1; 0) not stable !pc < !gc jGH(j!) j> 1, G:M:dB < 0; P:M: < 0Æ

If P is not zero, the closed-loop system is stable if and only if the number of counter-
clockwise encirclements of the Nyquist diagram about (�1; 0) point is equal to P .

The MATLAB Control System Toolbox function [re, im] = nyquist(num, den, !)
can obtain the Nyquist diagram by mapping the Nyquist path. However, the argument
! is specified as a real number. In order to map a complex number s = a + jb,
we must specify ! = �js, since the above function automatically multiplies ! by
the operator j. To avoid this, the developed function [re, im] = cnyquist(num, den,
s) can be used, where the argument s must be specified as a complex number. In
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defining the Nyquist path care must be taken for the path not to pass through any
poles or zeros of GH(s). The use of this function is demonstrated in the following
example.

Example 7.4

The open-loop transfer function of a system is given by

GH(s) =
K(s+ 1)

(s� 2)(s� 4)
=

K(s+ 1)

s2 � 6s+ 8

Obtain the Nyquist diagram for K = 12 and determine if the system is stable.

th = pi/2:-.1:-pi/2;
% Select a path with a large radius, say
% 50 to ensure open-loop poles are
% enclosed.

s1 = j*(-50:.2:50);% Nyquist path on the jw-axis from -j50
% to j50

s2 = 50*exp(j*th); % Nyquist path from pi/2 to -pi/2 with
% radius 50

s = [s1 s2]; % Row vector containing the Nyquist path

num = [12 12];
den = [1 -6 8];
[Re, Im] = cnyquist(num,den, s);
subplot(221),plot(s),title('Nyquist path'), grid
subplot(222),plot(Re,Im),title('Nyquist Diagram'),grid

The results are shown in Figure 7.4.
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FIGURE 7.4
Nyquist path and Nyquist diagram of the system in Example 7.4.

The open-loop transfer function has two poles in the right-half s-plane, that
is P = 2. The Nyquist path encircles (�1; 0) point twice in the counterclockwise
direction, that is N = �2 and Z = P + N = 2 � 2 = 0. Therefore, for K = 12,
the closed-loop system is stable. The G:M: is 1=2, and gain for marginal stability is
Kc = 1=2(12) = 6. The system is stable for all K > 6.
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7.3 Closed-Loop Frequency Response

The closed-loop frequency response is the frequency response of the closed-loop
transfer function T (j!). The performance specifications in terms of closed-loop fre-
quency response are the closed-loop system bandwidth, !B , and the closed-loop sys-
tem resonant peak magnitude, Mp.

The bandwidth, !B , is defined as the frequency at which the j T (j!) j drops
to 70.7 percent of its zero frequency value, or 3 dB down from the zero frequency
value. The bandwidth indicates how well the system tracks an input sinusoid and is a
measure of the speed of response. If the bandwidth is small, only signals of relatively
low frequency are passed, and the response is slow; whereas a large bandwidth corre-
sponds to a faster rise time. Therefore, the rise time and the bandwidth are inversely
proportional to each other.

The frequency at which the peak occurs, the resonant frequency , is denoted by
!r, and the maximum amplitude, Mp, is called the resonant peak magnitude. Mp is a
measure of the relative stability of the system. A large Mp corresponds to the presence
of a pair of dominant closed-loop poles with small damping ratio, which results in a
large maximum overshoot of the step response in the time domain. If the gain K
is set so that the open-loop frequency response GH(j!) passes through the (�1; 0)
point, Mp will be infinity. In general, if Mp is kept between 1.0 and 1.7, the transient
response will be acceptable. The developed function frqspec(w, mag) calculates Mp,
!r, and the bandwidth !B from the frequency response data.

Example 7.5

The closed-loop transfer function of Example 7.1 for K = 438 is

T (s) =
438

s3 + 52s+ 100s+ 438

Obtain the amplitude response and determine the system bandwidth and the res-
onant peak magnitude. The following commands

k = 438; num = k; den = [1 52 100 k];
w = 0:.1:10;
[mag, phase] = bode(num, den, w);
subplot(211),plot(w, mag),
title('Closed-loop system amplitude response'),
grid, pause, frqspec(w, mag)

give the result shown in Figure 7.5.

Peak Mag. = 1.7 wr = 2.7 Bandwidth = 4.25

7.3.1 Nichols Chart

The closed-loop frequency response obtained above is fast, accurate, and not limited
to a unity feedback system. However, it is possible to use the Nichols chart, which
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FIGURE 7.5
Closed-loop frequency response of the system in Example 7.5.

provides a graphical technique for obtaining closed-loop response from the open-loop
data. The chart is usually constructed for a unity feedback system.

The closed-loop frequency response of a unity feedback system is given by

M(j!) =
G(j!)

1 +G(j!)
=

x+ jy

1 + x+ jy
(7.14)

Let M = jM(j!) j and N = tan�m(j!), where �m is the closed-loop transfer
function phase angle. Upon substitution, the following two equations are obtained in
terms of M and N [10].

 
x� M2

1�M2

!2

+ y2 =

�
M

1�M2

�2
(7.15)

�
x+

1

2

�2
+

�
y � 1

2N

�2
=

1

4
+

1

4N2
: (7.16)

For a given M , (7.15) represents a circle with radius r =M=(1 �M2) and center at
(M2=(1�M2); 0) known as the M circle.
For a given N , (7.16) represents a circle with radius r =

p
(N2 + 1)=(4N2) and

center at �1=2; 1=(2N), known as the N circle.
The constant M and N circles can be used for analysis and design in the polar

plane. However, it is common to transform the M and N circles on the polar plot
into noncircular M and N contours on a log-magnitude phase diagram. The resulting
chart is called the Nichols chart. The procedure for obtaining the closed-loop response
from the Nichols chart is as follows:

1. The open-loop frequency response is superimposed on the Nichols chart.
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2. From the intersection of this curve with the contours at various frequency points,
values of M and �m are read from the plot.

3. The closed-loop frequency response curves are obtained from the above values.

4. The resonant peak value of Mr and the corresponding !r is given at a point
where G(j!) is tangent to an M circle.

5. The bandwidth !B is obtained by noting the frequency at which the G(j!)
curve intersects the M = 0:707 locus.

In order to use the Nichols chart for nonunity feedback systems, the block diagram
must be rearranged to obtain an equivalent unity feedback system.

The MATLAB Control System Toolbox function ngrid is used to obtain the
Nichols chart. ngrid(’off’) resumes normal auto-scaling.

Example 7.6

On the Nichols chart, draw the log-magnitude phase curve of the open-loop transfer
function of Example 7.1 for k = 438.

k = 438;
num = k; den = [1 52 100 0]; % open-loop transfer function
w =.1:.1:10;
[mag,phase] = bode(num,den,w);
ngrid, % generates Nichols chart
semilogy(phase, mag) % log-magnitude-phase plot
ngrid ('off') % resumes normal auto-scaling

The results are shown in Figure 7.6.
From the Nichols chart we can see that the open-loop transfer function is tangent

to the M = 1:7 circle. This is the resonant peak magnitude Mr which agrees with the
value found in Example 7.5.

7.4 Frequency-Response Design

In Chapter 6, root-locus analysis and design were presented. In the remainder of this
chapter, the design of linear control systems is carried out in the frequency domain.
The frequency response design provides information on the steady-state response,
stability margin, and system bandwidth. The transient response performance can be
estimated indirectly in terms of the phase margin, gain margin, and resonant peak
magnitude. Percent overshoot is reduced with an increase in the phase margin, and
the speed of response is increased with an increase in the bandwidth. Thus, the gain
crossover frequency, resonant frequency, and bandwidth give a rough estimate of the
speed of transient response.
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FIGURE 7.6
Plot of G(j!) superimposed on Nichols chart.

A common approach to the frequency response design is to adjust the open-
loop gain so that the requirement on the steady-state accuracy is achieved. This is
called the proportional controller. If the specifications on the phase margin and gain
margin are not satisfied, then it is necessary to reshape the open-loop transfer function
by adding the additional controller Gc(s) to the open-loop transfer function. Gc(s)
must be chosen so that the system has certain specified characteristics. This can be
accomplished by combining proportional with integral action (PI) or proportional
with derivative action (PD). There are also proportional-plus-integral-plus-derivative
(PID) controllers with the following transfer function

Gc(s) = KP +
KI

s
+KDs (7.17)

The ideal integral and differential compensators require the use of active amplifiers.
Other compensators which can be realized with only passive network elements

are lead, lag and lead-lag compensators. A first-order compensator having a single
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zero and pole in its transfer function is

Gc(s) =
Kc(s+ z0)

s+ p0
(7.18)

Several functions have been developed for the selection of suitable controller pa-
rameters based on the satisfaction of frequency response criteria such as phase margin.
These are

Function Controller

[numopen, denopen, denclsd] = frqp(num, den) Proportional
[numopen, denopen, denclsd] = frqlead(num, den) Phase-lead
[numopen, denopen, denclsd] = frqlag(num, den) Phase-lag
[numopen, denopen, denclsd] = frqpd(num, den) PD
[numopen, denopen, denclsd] = frqpi(num, den) PI
[numopen, denopen, denclsd] = frqpid(num,den) PID

Alternatively, the function [numopen, denopen, denclsd] = frdesign(num, den)
allows the user to select any of the above controller designs where num and den are
row vectors of polynomial coefficients of the uncompensated open-loop plant transfer
function. The function returns the open-loop and closed-loop numerators and denom-
inators of the compensated system transfer function.

7.5 Gain Factor Compensation or P Controller

The P controller is a pure gain controller. The design is accomplished by choosing the
gain KP for the uncompensated system to give the desired steady-state error. When
the gain KP is varied, the phase angle plot will not be affected. The Bode magnitude
curve is shifted up or down to correspond to the increase or decrease inKP . Similarly,
the effect of changing KP on the Nyquist diagram is to enlarge or reduce it; the shape
of the Nyquist diagram cannot be changed.

The function [numopen, denopen, denclsd] = frdesign( num, den) displays six
options for frequency response design. For proportional controller, option 1 must be
selected, which calls upon the function [numopen, denopen, denclsd] = frqp(num,
den). The user enters the desired gain Kp. The open-loop and closed-loop frequency-
domain specifications before and after compensation are found. Roots of the compen-
sated characteristic equation are also computed. The function returns the open-loop
and closed-loop numerators and denominators of the compensated system transfer
function.
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Example 7.7

Obtain the Bode plot, gain and phase margins for the feedback control system with
the open-loop transfer function

G(s) =
8

s(s+ 1)(s+ 4)
=

8

s3 + 5s2 + 4s

Determine the gain factor KP of a proportional controller such that the steady-
state error due to a ramp input will equal 0.25. Obtain the frequency response of the
compensated system and the new gain and phase margins.

The steady-state error specification requires

ess =
1

Kv
= 0:25

or

Kv = 4

where the velocity error constant Kv is given by

Kv = lim
s!0

s
8Kp

s(s+ 1)(s+ 4)
= 2Kp

Therefore, the compensator gain required is Kp = 2.
The following commands

num = 8; den = [1 5 4 0]; w = 0.1:0.1:10;
[numopen,denopen,denclsd]=frdesign(num,den);%Design function
[mag, phase] = bode(num, den, w); dB = 20*log10(mag);
[magp, phase]= bode(numopen,denopen,w);dBP = 20*log10(magp);
subplot(211), semilogx(w, dB, w, dBP), grid
title('Uncompensated and gain compensated
Magnitude plot (dB) ') subplot(212),semilogx(w, phase),
title('Phase angle plot (degree) ')
grid

result in

Compensator type Enter
Gain compensation 1
Phase-lead 2
Phase-lag 3
PD Controller 4
PI Controller 5
PID Controller 6
To quit 0

Enter your choice ! 1
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Uncompensated control system
Gain Margin = 2.5 Gain crossover w = 1.22
Phase Margin = 22.5 Phase crossover w = 2

Enter the desired gain factor Kp ! 2

Gain & Phase Margins with gain compensation
Gain Margin = 1.25 Gain crossover w = 1.79
Phase Margin = 5.19 Phase crossover w = 2

Peak Mag. = 11.6 wr = 1.8 Bandwidth = 2.75

Row vectors of polynomial coefficients of the
compensated system:

Open-loop num. 0 0 0 16
Open-loop den. 1 5 4 0
Closed-loop den. 1 5 4 16

Roots of the compensated characteristic equation:
-4.8549
-0.0725 + 1.8139i
-0.0725 - 1.8139i
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FIGURE 7.7
Bode diagram of Example 7.7 with gain compensation.

The results are given in Figure 7.7. It can be seen that increasing the gain values
improves the steady-state behavior but will decrease the phase and gain margins re-
sulting in poor stability. It is then necessary to redesign the system by using a suitable
controller to alter the frequency response so that the performance specifications will
be met.
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7.6 Phase-Lead Design

In (7.18) the compensator is a high-pass filter or phase-lead if p0 > z0. A phase-lead
compensator contributes positive phase angles, and tends to increase phase margin
and improve relative stability. Also, we need to increase the gain crossover frequency.
This increases the bandwidth and results in a faster transient response.

If !0 and !p are the corner frequencies of the phase-lead controller, the max-
imum value of the controller phase angle occurs at the frequency !m given by the
geometric mean of the two corner frequencies of the controller. That is

!m =
p
!o!p (7.19)

We need to select the pole and zero of the phase-lead controller such that the
maximum phase lead occurs at the new gain crossover frequency without greatly al-
tering the magnitude curve near that frequency. This is accomplished by placing the
corner frequency of the phase-lead controller such that �m is located at the new gain
crossover frequency, !gc.

The design specifications simply include the phase margin specification and the
steady-state error requirement.

The DC gain of the compensator is

a0 = Gc(0) =
Kcz0
p0

(7.20)

The controller transfer function may be written in the following form

Gc(s) =
Kc(s+ z0)

(s+ p0)
=
a1s+ a0
b1s+ b0

(7.21)

where a1 = Kc=p0, b1 = 1=p0 and b0 = 1.
The compensator DC gain a0 can be chosen to meet the steady-state error. For

example, the error constant for a specified steady-state error ess due to an input ramp
is given by

Kv =
1

ess
= lim

s!0
sGc(s)GH(s) = a0 lim

s!0
sGH(s) (7.22)

Thus from the above equation, the controller DC gain a0 to realize the steady-state
error specification is found.

The compensated characteristic equation of the control system is given by

1 +Gc(s)GH(s) = 0 (7.23)

If PM is the desired phase margin at the new gain crossover frequency !gc, then from
(7.23) we have

Gc(j!gc)GH(j!gc) = 16 (�180 + PM) (7.24)

Substituting for Gc(j!gc) and equating real and imaginary parts of the above expres-
sion, the controller parameters are found [12] as follows

a1 =
1�M cos �

!gcM sin �
(7.25)
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b1 =
cos � � a0M

!gc sin �
(7.26)

where � is the angle of the controller transfer function evaluated at j!gc,

� = 6 Gc(j!gc) = �180Æ + PM �  (7.27)

and M and  are the magnitude and phase angle of the open-loop plant transfer func-
tion evaluated at j!gc, i.e.,

GH(j!gc) =M 6  (7.28)

For a phase-lead controller, the phase-angle of the compensator must be positive;
therefore, from (7.27)

 < �180Æ + PM (7.29)

Also, for a phase-lead compensator a0 < Gc(j!gc), then from (7.24)

a0M < 1 (7.30)

For a stable controller, a1 and b1 must be greater than zero.
Based on the above equations, the function [numopen, denopen, denclsd] =

frqlead (num, den) is used for the phase-lead controller design. num and den are
the numerator and denominator of the polynomial coefficients of the open-loop plant
transfer function. The user enters the desired phase margin and the controller DC gain,
Gc(0) = Kcz0=p0. The program finds and displays a compensated gain crossover fre-
quency range for a stable controller. The user then specifies the crossover frequency in
this range. The controller transfer function and the frequency domain specifications
before and after compensation are found. Roots of the compensated characteristic
equation are also computed. The function returns the open-loop and closed-loop nu-
merators and denominators of the compensated system transfer function.

Example 7.8

Design a phase-lead compensator for the system of Example 7.7 such that the system
has a phase margin of 45Æ and a steady-state error of 0.25 due to a ramp input. Plot
the frequency response before and after compensation. Find the time-domain specifi-
cations using the function timespec(numopen, denclsd), and obtain a plot of the step
response.

The function [numopen, denopen, denclsd] = frdesign(num, den) with option
2 is used for the phase-lead compensation.

The velocity error constant is Kv = 1=0:25 = 4, and from (7.22) the controller
DC gain is given by a0 = 4=2 = 2.

The following commands

num = 8; den = [1 5 4 0];
[numopen,denopen, denclsd] = frdesign(num,den);

% Design function
w = .1:.1:10;
mag, phase] = bode(num, den,w); dB = 20*log10(mag);
[magp, phasep] = bode(numopen, denopen,w);
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dBP = 20*log10(magp);
subplot(211),semilogx(w, dB, w, dBP),
title('Uncompensated and compensated magnitude plot (dB)')
subplot(212),semilogx(w, phase, w,phasep), grid
title('Uncompensated and compensated

phase angle plot (degree)')
t=0:.05:4; c=step(numopen, denclsd, t);
clg, subplot(211), plot(t, c), grid,
title('Step response of the compensated system')
timespec(numopen, denclsd);

result in

Compensator type Enter
Gain compensation 1
Phase-lead 2
Phase-lag 3
PD Controller 4
PI Controller 5
PID Controller 6
To quit 0

Enter your choice ! 2

Enter the compensator DC Gain ! 2
Enter desired Phase Margin ! 45
For a stable controller select a compensated gain crossover
frequency wgc between 2.32 and 4.82
Suggested wgc for max. phase lead is 3.57

Enter wgc ! 3.57
Uncompensated control system
Gain Margin = 2.5 Gain crossover w = 1.22
Phase Margin = 22.5 Phase crossover w = 2
Controller transfer function
Gc(0) = 2, Gc = 83.535(s + 0.821555)/(s + 34.3143)

Row vectors of polynomial coefficients of the compensated
system:

Open-loop num. 0 0 0 668.2798 549.0286
Open-loop den. 1.0000 39.3143 175.5714 137.2572 0
Closed-loop den 1.0000 39.3143 175.5714 805.5369 549.0286

Gain Margin = 8.27 Gain crossover w = 3.57
Phase Margin = 45 Phase crossover w = 12
Peak Mag. = 1.31 wr = 3.6 Bandwidth = 5.95

Roots of the compensated characteristic equation:
-34.9359
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-1.7915 + 4.0680i
-1.7915 - 4.0680i
-0.7954

The results are given in Figures 7.8a and 7.8b.
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FIGURE 7.8
Bode diagram of Example 7.8.

Peak time = 0.806 Percent overshoot = 22.0289
Rise time = 0.338
Settling time = 1.963

If the closed-loop frequency response specifications and the time-domain performance
specifications are performed for the uncompensated system, we obtain the following
values.

Peak Mag. = 2.63 wr = 1.3 Bandwidth = 1.95
Peak time = 2.63 Percent overshoot = 22.8697
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FIGURE 7.9
Step response of the compensated system of Example 7.8.

Rise time = 0.97227
Settling time = 15.198

From the above example we see that the use of a phase-lead controller to increase
the phase margin will result in an increase in the crossover frequencies. In the closed-
loop frequency response, the resonant peak magnitude is reduced while the bandwidth
is increased. This corresponds to the reduction of the percent overshoot and the rise
time in the step response.

One additional point can be made concerning the relationship between the band-
width and the rise time of step response discussed in Chapter 4, Section 4.4. An ap-
proximate relationship was given by (4.18). That is, !Btr ' constant. Comparison
of the uncompensated and compensated values shows that this product is approxi-
mately 2.

As a final note for the designed compensator, the ratio of the high-frequency gain
(! ! 1) to the DC gain is 83:535=2 = 41:76. This may produce high-frequency
noise problems which may be objectionable for some systems. In this case, the ratio
should be lowered (typically by a ratio of 10). To do this, redesign the system select-
ing a lower gain crossover frequency, !pc. Alternatively, the phase margin may be
reduced. However, this will increase the rise time and the settling time.

7.7 Phase-Lag Design

In (7.18), the compensator is a low-pass filter or phase-lag if p0 < z0. The phase-
lag compensator adds a negative angle to the angle criterion and tends to destabilize
the system. The design problem is to determine the compensator parameters to im-
prove the steady-state error and to maintain a desired phase margin for a satisfactory
transient response. The pole and zero of the lag compensator must be located substan-
tially lower than the new gain crossover frequency. Therefore, we move the new gain
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crossover frequency to a lower frequency while keeping the phase curve of the Bode
plot relatively unchanged at the gain crossover frequency. The result is an increase in
the low-frequency gain while the high-frequency range is attenuated.

Equations (7.25) and (7.26) are used for phase-lag design. However, since the
compensator angle � must be negative, criterion (7.29) becomes

 > �180Æ + PM (7.31)

Also, for a phase-lag compensator, since a0 > Gc(j!gc), then from (7.24)

a0M > 1 (7.32)

For a stable controller, a1 and b1 must be greater than zero.
Based on the above equations the function [numopen, denopen, denclsd] =

frqlag (num, den) is developed for the phase-lag controller design. num and den are
the numerator and denominator of the polynomial coefficients of the open-loop plant
transfer function. The user enters the desired phase margin and the controller DC gain,
Gc(0) = Kcz0=p0. The program finds and displays a compensated gain crossover fre-
quency range for a stable controller. The user then specifies the crossover frequency in
this range. The controller transfer function and the frequency domain specifications
before and after compensation are found. Roots of the compensated characteristic
equation are also computed. The function returns the open-loop and closed-loop nu-
merators and denominators of the compensated system transfer function.

Example 7.9

Design a phase-lag compensator for the system of Example 7.7 such that the system
has a phase margin of 45Æ and a steady-state error of 0.05 due to a ramp input.

The function [numopen, denopen, denclsd] = frdesign(num, den) with option
3 is used for the phase-lag compensation.

The velocity error constant is Kv = 1=0:05 = 20, and from (7.22) the controller
DC gain is given by a0 = 20=2 = 10.

The following commands

num = 8; den = [1 5 4 0];
[numopen, denopen, denclsd] = frdesign(num,den);

% Design function
timespec(numopen, denclsd);

result in

Compensator type Enter
Gain compensation 1
Phase-lead 2
Phase-lag 3
PD Controller 4
PI Controller 5
PID Controller 6
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To quit 0

Enter your choice ! 3

Enter the compensator DC Gain ! 10
Enter desired Phase Margin ! 45
For a stable controller select a compensated gain crossover
frequency wgc between 0.070 and 0.631

Enter wgc ! 0.4

Uncompensated control system
Gain Margin = 2.5 Gain crossover w = 1.22
Phase Margin = 22.5 Phase crossover w = 2

Controller transfer function
Gc(0) = 10, Gc = 0.206043(s + 0.128954)/(s + 0.00265701)

Row vectors of polynomial coefficients of the compensated
system:

Open-loop num. 0 0 0 1.6483 0.2126
Open-loop den. 1.0000 5.0027 4.0133 0.0106 0
Closed-loop den 1.0000 5.0027 4.0133 1.6590 0.2126

Gain Margin = 10.20 Gain crossover w = 0.4
Phase Margin = 45 Phase crossover w = 1.84
Peak Mag. = 1.38 wr = 0.3 Bandwidth = 0.65

Roots of the compensated characteristic equation:
-4.1240
-0.3370 + 0.3719i
-0.3370 - 0.3719i
-0.2047

Peak time = 7.105 Percent overshoot = 32.345
Rise time = 2.597
Settling time = 17.836

The advantage of the phase-lag design is that the steady-state error can be reduced to
a low value; however, the disadvantage is that the bandwidth is lowered which results
in a larger rise time and thus a slower response.

7.8 PID Design

One of the most common controllers available commercially is the PID controller.
Different processes are suited to different combinations of proportional, integral, and
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derivative control. The control engineer’s task is to adjust the three gain factors to
arrive at an acceptable degree of error reduction simultaneously with acceptable dy-
namic response.

For a desired phase margin PM the Nyquist plot must pass through the point
16 (�180 + PM) at the new gain crossover frequency. The PID controller transfer
function is given by (7.17). At j!gc the controller transfer function is given by

Gc(j!gc) = KP +
KI

j!gc
+KDj!gc (7.33)

The controller parameters are found [12] by substituting (7.33) in (7.24) and equating
the real and imaginary parts of the resulting equation

KP =
cos �

M
(7.34)

KD =
KI

!gc2
+

sin �

M!gc
(7.35)

where �, M and  are given by (7.27) and (7.28).
For a stable controller, KP and KD must be positive. Thus !gc must be selected

such that � in (7.27) will be less than 90Æ. Equations (7.34) and (7.35) are applied
for the design of a PID controller. For PD or PI controllers, the appropriate gain is
set to zero. Based on the above equations, the three functions [numopen, denopen,
denclsd] = frqpd(num, den), [numopen, denopen, denclsd] = frqpi(num, den) and
[numopen, denopen, denclsd] = frqpid(num, den) are developed for the PID con-
troller design. num and den are the numerator and denominator of the polynomial
coefficients of the open-loop plant transfer function. The user enters the desired phase
margin. Each function finds and displays a compensated gain crossover frequency
range for a stable controller. The user then specifies the crossover frequency in this
range. For the PID controller the constant KI must also be specified. The controller
transfer function and the frequency domain specifications before and after compensa-
tion are found. Roots of the compensated characteristic equation are also computed.
The function returns the open-loop and closed-loop numerators and denominators of
the compensated system transfer function.

7.8.1 PD Controller

In a PD controller, both the error and its derivative are used for control, and the com-
pensator transfer function is

Gc(s) = KP +KDs (7.36)

From above, it can be seen that the PD controller is equivalent to the addition
of a simple zero at s = �KP=KD to the open-loop transfer function. This improves
the transient response. From a different point of view, the PD controller may also be
used to improve the steady-state error, because it anticipates large errors, and attempts
corrective action before they occur.
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The function [numopen, denopen, denclsd] =frdesign(num, den) with option
4 is used for the PD controller design. Its use is demonstrated in the following exam-
ple.

Example 7.10

The open-loop transfer function of a control system is given by

Gc(s) =
50

s(s+ 1)(s+ 4)(s+ 5)
=

50

s4 + 10s3 + 29s2 + 20s

Design a PD controller for the above system to have a phase margin of 50Æ.
Also find the time-domain performance specification for the compensated system.
The commands

num = 50; den = [1 10 29 20 0];
[numopen,denopen, denclsd] = frdesign(num,den);

% Design function
timespec(numopen, denclsd);

result in

Compensator type Enter

Gain compensation 1
Phase-lead 2
Phase-lag 3
PD Controller 4
PI Controller 5
PID Controller 6
To quit 0

Enter your choice ! 4

Enter desired Phase Margin ! 50

For a stable controller select a compensated gain crossover
frequency wgc between 0.509 and 2.6

Enter wgc ! 1.2

Uncompensated control system
Gain Margin = 1.08 Gain crossover w = 1.36
Phase Margin = 2.48 Phase crossover w = 1.42

Controller transfer function
Gc = 0.613155 + 0.4347 s

Row vectors of polynomial coefficients of the compensated
system:
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Open-loop num. 0 0 0 21.7350 30.6577
Open-loop den. 1 10 29 20 0
Closed-loop den 1 10 29 41.7350 30.6577

Gain Margin = 6.71 Gain crossover w = 1.2
Phase Margin = 50 Phase crossover w = 4.07

Peak Mag. = 1.19 wr = 1.1 Bandwidth = 2.04

Roots of the compensated characteristic equation:
-6.3470
-1.9390
-0.8570 + 1.3254i
-0.8570 - 1.3254i

Peak time = 2.304 Percent overshoot = 18.1044
Rise time = 0.972
Settling time = 5.064

7.8.2 PI Controller

In a PI controller, the integral of the error as well as the error itself is used for control,
and the compensator transfer function is

Gc(s) = KP +
KI

s
(7.37)

The PI controller is extremely common in process control or regulating systems. In-
tegral control bases its corrective action on the cumulative error integrated over time.
The controller increases the type of system by 1 and is used to reduce the steady-state
errors. The function [numopen, denopen, denclsd] =frdesign(num, den) with op-
tion 5 is used for the PI controller design. Its use is demonstrated in the following
example.

Example 7.11

Design a PI controller for the system of Example 7.10 for a compensated system phase
margin of 50Æ. Also, obtain the time domain performance specifications.

The following commands

num = 50; den = [1 10 29 20 0];
[numopen,denopen, denclsd] = frdesign(num,den);

% Design function
timespec(numopen, denclsd);

result in

Compensator type Enter
Gain compensation 1
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Phase-lead 2
Phase-lag 3
PD Controller 4
PI Controller 5
PID Controller 6
To quit 0

Enter your choice ! 5

Enter desired Phase Margin ! 50

For a stable controller select a compensated gain crossover
frequency wgc between 0.0509 and 0.458

Enter wgc ! 0.35

Uncompensated control system
Gain Margin = 1.08 Gain crossover w = 1.36
Phase Margin = 2.48 Phase crossover w = 1.42

Controller transfer function
Gc = 0.146155 + 0.0105983/s

Row vectors of polynomial coefficients of the compensated
system:

Open-loop num. 0 0 0 0 7.3077 0.5299
Open-loop den. 1 10 29 20 0 0
Closed-loop den 1 10 29 20 7.3077 0.5299

Gain Margin = 6.7 Gain crossover w = 0.35
Phase Margin = 50 Phase crossover w = 1.34
Peak Mag. = 1.24 wr = 0.225 Bandwidth = 0.538

Roots of the compensated characteristic equation:
-4.6041 + 0.4247i
-4.6041 - 0.4247i
-0.3493 + 0.3796i
-0.3493 - 0.3796i
-0.0932

Peak time = 8.025 Percent overshoot = 24.842
Rise time = 2.996
Settling time = 31.458

7.8.3 PID Controller

The PID controller is used to improve the dynamic response as well as to reduce
or eliminate the steady-state error. The function [numopen, denopen, denclsd] =
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frdesign(num, den) with option 6 is used for the PID controller design. Its use is
demonstrated in the following example.

Example 7.12

Design a PID controller for the system of Example 7.10 for a compensated sys-
tem phase margin of 50Æ. Also, obtain the time domain performance specifications.
Choose KI to have a value of 0.01.

The following commands

num = 50; den = [1 10 29 20 0];
[numopen,denopen, denclsd] = frdesign(num,den);

% Design function
timespec(numopen, denclsd);

result in

Compensator type Enter

Gain compensation 1
Phase-lead 2
Phase-lag 3
PD Controller 4
PI Controller 5
PID Controller 6
To quit 0

Enter your choice ! 6

Enter the integrator gain KI ! 0.01
Enter desired Phase Margin ! 50

For a stable controller select a compensated gain crossover
frequency wgc between 0.407 and 2.61

Enter wgc ! 1.2

Uncompensated control system
Gain Margin = 1.08 Gain crossover w = 1.36
Phase Margin = 2.48 Phase crossover w = 1.42

Controller transfer function
Gc = 0.613155 + 00.01/s + 0.441645 s

Row vectors of polynomial coefficients of the compensated
system:

Open-loop num. 0 0 0 22.0822 30.6577 0.5
Open-loop den. 1 10 29 20 0 0
Closed-loop den 1 10 29. 42.0822 30.6577 0.5
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Gain Margin = 6.69 Gain crossover w = 1.2
Phase Margin = 50 Phase crossover w = 4.09

Peak Mag. = 1.19 wr = 1.1 Bandwidth = 2.04

Roots of the compensated characteristic equation:
-6.3632
-0.8774 + 1.3246i
-0.8774 - 1.3246i
-1.8653
-0.0167

Peak time = 2.28 Percent overshoot = 18.75
Rise time = 0.96
Settling time = 3.72



CHAPTER

8
MODERN
CONTROL
DESIGN

The classical design techniques of Chapters 6 and 7 are based on the root-locus and
frequency response that utilize only the plant output for feedback with a dynamic
controller. In this final chapter on design, we employ modern control designs that
require the use of all state variables to form a linear static controller. Modern control
design is especially useful in multivariable systems; however, in this chapter the ideas
of state-space design are illustrated using single-input, single-output systems.

One approach in modern control systems accomplished by the use of state feed-
back is known as pole-placement design. The pole-placement design allows all roots
of the system characteristic equation to be placed in desired locations. This results in
a regulator with constant gain vector K.

The state-variable feedback concept requires that all states be accessible in a
physical system, but for most systems this requirement is not met; i.e., some of the
states are inaccessible. For systems in which all states are not available for feedback,
a state estimator (observer) may be designed to implement the pole-placement design.

The other approach to the design of regulator systems is the optimal control
problem where a specified mathematical performance criterion is minimized.

170
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8.1 Pole-Placement Design

The control is achieved by feeding back the state variables through a regulator with
constant gains. Consider the control system presented in the state-variable form

_x(t) = Ax(t) +Bu(t) (8.1)

y(t) = Cx(t)

Consider the block diagram of the system shown in Figure 8.1 with the following state
feedback control

u(t) = �Kx(t) (8.2)

where K is a 1 � n vector of constant feedback gains. The control system input r(t)
is assumed to be zero. The purpose of this system is to return all state variables to
values of zero when the states have been perturbed.

.............................................................................................................................

........
...
..
..
.

��
��

......................................................................................................................................................................................................................................................................................................................................................

........
...
..
..
. Plant .........................................................................................

........
...
..
..
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..............................................................................................................................................................................................
...
..
..
.

................kn.........................................................
..
..
..
..
..
.
..
..
..
.
..
..
..
.
..
..
..
..
..
.
..
..
..
.
..
..
..
..
..
.
..
..
..
.
..
..
..
..
..
.
..
..
..................

...
..
.
..
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..........................................................................................................................................................
...
..
..
.

................k2..................................................................................................................................................
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
.
.
..
.
.
..
.
..
.
.
..
...........

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

......................................................................................................................
...
..
..
.

................k1...........................................................................................................................................................................................................................................................................................................................................................................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.� �
�

r(t) = 0 y(t)u(t)

xn(t) � � � x2(t) x1(t)

FIGURE 8.1
Control system design via pole placement.

Substituting (8.2) into (8.1), the closed-loop system state-variable representation
is

_x(t) = (A�BK)x(t) = A fx(t) (8.3)

The closed-loop system characteristic equation is

jsI�A+BKj= 0 (8.4)

Assume the system is represented in the phase variable canonical form as follows
2
6666664

_x1
_x2
...

_xn�1
_xn

3
7777775
=

2
6666664

0 1 0 : : : 0
0 0 1 : : : 0
...
0 0 0 : : : 1

�a0 �a1 �a2 : : : �an�1

3
7777775

2
6666664

x1
x2
...

xn�1
xn

3
7777775
+

2
6666664

0
0
...
0
1

3
7777775
u(t)

(8.5)
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Substituting for A and B into (8.4), the closed-loop characteristic equation for the
control system is found

jsI�A+BKj= sn+ (an�1+ kn)s
n�1+ � � �+(a1+ k2)s+ (a0+ k1) = 0 (8.6)

For the specified closed-loop pole locations ��1; : : : ;��n, the desired charac-
teristic equation is

�c(s) = (s+ �1) � � � (s+ �n) = sn + �n�1s
n�1 + � � �+ �1s+ �0 = 0 (8.7)

The design objective is to find the gain matrix K such that the characteristic
equation for the controlled system is identical to the desired characteristic equa-
tion. Thus, the gain vector K is obtained by equating coefficients of equations (8.6)
and (8.7).

ki = �i�1 � ai�1 (8.8)

If the state model is not in the phase-variable canonical form, we can use the trans-
formation technique of Chapter 3 Section 3.5 to transform the given state model to
the phase-variable canonical form. The gain factor is obtained for this model and then
transformed back to confirm with the original model. This procedure results in the
following formula, known as Ackermann’s formula.

K =
�
0 0 � � � 0 1

�
S�1�c(A) (8.9)

where the matrix S is given by

S =
�
B AB A2B : : : An�1B

�
(8.10)

and the notation �c(A) is given by

�c(A) = An + �n�1A
n�1 + � � �+ �1A+ �0I (8.11)

The function [K, Af ] = placepol(A, B, C, p) is developed for the pole-placement
design. A, B, C are system matrices and p is a row vector containing the desired
closed-loop poles. This function returns the gain vector K and the closed-loop system
matrix Af . Also, the MATLAB Control System Toolbox contains two functions for
pole-placement design. Function K = acker(A, B, p) is for single input systems, and
function K = place(A, B, p), which uses a more reliable algorithm, is for multi-input
systems.

The condition that must exist to place the closed-loop poles at the desired lo-
cation is to be able to transform the given state model into phase-variable canonical
form. That is, the controllability matrix S, given in (8.10), must have a nonzero deter-
minant. This characteristic is known as controllability.

Example 8.1

For the plant 2
4 _x1

_x2
_x3

3
5 =

2
4 �1 0 0
�1 �2 0
1 0 0

3
5
2
4 x1
x2
x3

3
5+

2
4 1

0
0

3
5 u
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y =
�
1 1 0

�
x

design a state feedback control to place the closed-loop pole at �3 � j4 and �8.
Obtain the initial condition response, given x1(0) = 1, x2(0) = 1 and x3(0) = �1.
The following commands

A=[-1 0 0; -1 -2 0; 1 0 0];
B=[1; 0; 0];
C=[1 1 0 ]; D=0;
j=sqrt(-1);
P=[-3+j*4 -3-j*4 -8]; % desired closed-loop poles
[K,Af]=placepol(A,B,C,P); % returns gain K and closed-loop

% system matrix
% initial condition response
t=0:.02:2;
r=zeros(1,length(t)); % generates a row of zero input
x0=[1 1 -1]; % initial state
[y,x]=lsim(Af, B, C, D, r, t, x0); % initial state response
subplot(2,2,1), plot(t, x(:,1)),title('x_1(t)'), grid
subplot(2,2,2), plot(t, x(:,2)),title('x_2(t)'), grid
subplot(2,2,3), plot(t, x(:,3)),title('x_3(t)'), grid
subplot(2,2,4), plot(t, y),title('y(t)'), grid
subplot(111)

result in

Feedback gain vector K
11 51 100

Uncompensated Plant
Transfer function:

s^2 + s
-----------------
s^3 + 3 s^2 + 2 s

Compensated system closed-loop
Transfer function:

s^2 + s
-------------------------
s^3 + 14 s^2 + 73 s + 200

Compensated system matrix A - B*K
-12 -51 -100
-1 -2 0

The results are given in Figure 8.2.
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0 0.5 1 1.5 2
−2

0

2

4

x
1
(t)

0 0.5 1 1.5 2
−0.5

0

0.5

1

x
2
(t)

0 0.5 1 1.5 2
−1

−0.5

0

0.5

x
3
(t)

0 0.5 1 1.5 2
−2

0

2

4
y(t)

FIGURE 8.2
Initial condition response for Example 8.1.

Example 8.2

A single-input single-output plant has the transfer function

G(s) =
4

s(s+ 1)(s+ 4)

Obtain a state model for the plant and design a state feedback that will place the
closed-loop pole at �2 � j2 and �5. Also, obtain the closed-loop transfer function
for the controlled system.

The following commands

num=4; den=[1 5 4 0];
[A, B, C, D]=tf2ss(num, den) % converts transfer function

% to state model
j=sqrt(-1);
P=[-2+j*2 -2-j*2 -5]; % desired closed-loop poles
[K,Af]=placepol(A,B,C,P); % returns gain K & closed-loop

% system matrix

result in

A =
-5 -4 0
1 0 0
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0 1 0
B =

1
0
0

C =
0 0 4

D =
0

Feedback gain vector K
4 24 40

Uncompensated Plant
Transfer function:

4
-----------------
s^3 + 5 s^2 + 4 s
Compensated system closed-loop
Transfer function:

4
-----------------------
s^3 + 9 s^2 + 28 s + 40
Compensated system matrix A - B*K
-9 -28 -40
1 0 0
0 1 0

From the above results the closed-loop transfer function for the controlled plant is

T (s) =
C(s)

R(s)
=

4

s3 + 9s2 + 28s+ 40

8.2 Controllability

A system is said to be controllable when the plant input u can be used to transfer
the plant from any initial state to any arbitrary state in a finite time. The plant de-
scribed by (8.1) with the system matrix having dimension n � n is completely state
controllable if and only if the controllability matrix S in (8.10) has a rank of n. The
function S=cntrable(A, B) is developed which returns the controllability matrix S
and determines whether or not the system is state controllable.

8.3 Observer Design

In the pole-placement approach to the design of control systems, it was assumed that
all state variables are available for feedback. However, in practice it is impractical to
install all the transducers which would be necessary to measure all of the states. If the
state variables are not available because of system configuration or cost, an observer
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r(t) = 0 y(t)u(t)

Estimated
State _x

FIGURE 8.3
State feedback design with an observer.

or estimator may be necessary. The observer is an estimator algorithm based on the
mathematical model of the system. The observer creates an estimate x̂(t) of the states
from the measurements of the output y(t). The estimated states, rather than the actual
states, are then fed to the controller. One scheme is shown in Figure 8.3.

Consider a system represented by the state and output equations

_x(t) = Ax(t) +Bu(t) (8.12)

y(t) = Cx(t) (8.13)

Assume that the state x(t) is to be approximated by the state x̂(t) of the dynamic
model

_̂x(t) = Ax̂(t) +Bu(t) +G(y(t)� ŷ(t)) (8.14)

ŷ(t) = Cx̂(t) (8.15)

Subtracting (8.14) from (8.12), and (8.15) from (8.13), we have

( _x(t)� _̂x(t)) = A(x(t)� x̂(t))�G(y(t)� ŷ(t)) (8.16)

(y(t)� ŷ(t)) = C(x(t)� x̂(t)) (8.17)

where x(t) � x̂(t) is the error between the actual state vector and the estimated vec-
tor, and y(t)� ŷ(t) is the error between the actual output and the estimated output.
Substituting the output equation into the state equation, we obtain the equation for the
error between the estimated state vector and the actual state vector.

_e(t) = (A�GC)e(t) = Aee(t) (8.18)

where
e(t) = x(t)� x̂(t) (8.19)

If G is chosen such that eigenvalues of matrix A�GC all have negative real parts,
then the steady-state value of the estimated state vector error e(t) for any initial con-
dition will tend to zero. That is, x̂(t) will converge to x(t). The design of the observer
is similar to the design of the controller. However, the eigenvalues of A�GC must
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be selected to the left of the eigenvalues of A. This ensures that the observer dynamic
is faster than the controller dynamic for providing a rapid updated estimate of the state
vector.

The estimator characteristic equation is given by

jsI�A+GCj= 0 (8.20)

For a specified speed of response, the desired characteristic equation for the
estimator is

�e(s) = sn + �n�1s
n�1 + � � �+ �1s+ �0 = 0 (8.21)

Thus, the estimator gain G is obtained by equating coefficients of (8.20) and
(8.21). This is identical to the pole-placement technique, and G is found by the appli-
cation of Ackermann’s formula

G = �e(A)

2
6664
C
CA
...
CAn�1

3
7775
�1 2
6664

0
0
...
1

3
7775 (8.22)

and the notation �e(A) is given by

�e(A) = An + �n�1A
n�1 + � � �+ �1A+ �0I (8.23)

The function [G, Ae] = observer(A, B, C, pe) is developed for the estimator. pe is
the desired estimator eigenvalues. This function returns the gain vector G and the
closed-loop system matrix A f .

The necessary condition for the design of an observer is that all the states can
be observed from the measurements of the output. This characteristic is known as
observability.

Example 8.3

For the plant �
_x1
_x2

�
=

�
0 1
16 0

� �
x1
x2

�
+

�
0
1

�
u

y =
�
1 0

�
x

design a full-state observer such that the observer is critically damped with eigenval-
ues at �8 and �8.

The following commands

A=[ 0 1; 16 0];
B=[0; 1];
C=[1 0]; D=0;
Pe=[-8 -8]; % desired observer eigenvalues
[K,Ae]= observer(A,B,C,Pe); % returns gain K and closed-loop

result in
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Estimator gain vector G
16
80

Open-loop Plant
Transfer function:

1
--------
s^2 - 16
Error matrix A - G*C

-16 1
-64 0

8.4 Observability

A system is said to be observable if the initial vector x(t) can be found from the
measurement of u(t) and y(t). The plant described by (8.12) is completely state ob-
servable if the inverse matrix in (8.22) exists. The function V=obsvable(A, C) returns
the observability matrix V and determines whether or not the system is state observ-
able.

8.5 Combined Controller-Observer Design

Consider the system represented by the state and output equations (8.12) and (8.13)
with the state feedback control based on the observed state x̂(t) given by

u(t) = �Kx̂(t) (8.24)

Substituting in (8.12), the state equation becomes

_x(t) = (A�BK)x(t) +BKe(t) (8.25)

Combining the above equation with the error equation given by (8.19), we have

�
_x(t)
_e(t)

�
=

�
A�BK BK

0 A�GC

� �
x(t)
e(t)

�
(8.26)

The function [K, G, Ac] = placeobs(A, B, C, p, pe) is developed for the com-
bined controller-observer design. A is the system matrix, B is the input column vector,
and C is the output row vector. p is a row vector containing the desired closed-loop
poles and pe is the desired observer eigenvalues. The function displays the gain vec-
tors K and G, open-loop plant transfer function, and the controlled system closed-loop
transfer function. Also, the function returns the gain vector K, and the combined sys-
tem matrix in (8.26).
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Example 8.4

For the system of Example 8.3, design a controller-observer system such that the
desired closed-loop poles for the system are at �1 � j2. Choose the eigenvalues of
the observer gain matrix to be pe1 = pe2 = �8.

The following commands

A=[ 0 1; 16 0];
B=[0; 1];
C=[1 0]; D=0;
j=sqrt(-1);
P=[-1+j*2 -1-j*2]; % desired regulator roots
Pe=[-8 -8]; % desired observer roots
[K,G,Af]= placeobs(A,B,C,P,Pe); % returns gain K,G & closed-loop

% system matrix

result in

Feedback gain vector K
21 2

Estimator gain vector G:
16
80

Open-loop Plant
Transfer function:

1
--------
s^2 - 16
Controller-estimator
Transfer function:
496 s + 2192

----------------
s^2 + 18 s + 117
Controlled system closed-loop
Transfer function:

496 s + 2192
------------------------------------
s^4 + 18 s^3 + 101 s^2 + 208 s + 320
Combined controller observer system matrix
0 1 0 0

-5 -2 21 2
0 0 -16 1
0 0 -64 0

From the above results the controller-observer transfer function is

Gce =
496s+ 2192

s2 + 18s+ 117

The closed-loop transfer function for the controlled plant is

T (s) =
C(s)

R(s)
=

496s+ 2192

s4 + 18s3 + 101s2 + 208s+ 320
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8.6 Optimal Regulator Design

The object of the optimal regulator design is to determine the optimal control law
u�(x; t) which can transfer the system from its initial state to the final state (with zero
system input) such that a given performance index is minimized. The performance
index is selected to give the best trade-off between performance and cost of control.
The performance index that is widely used in optimal control design is known as the
quadratic performance index and is based on minimum-error and minimum-energy
criteria.

Consider the plant described by

_x(t) = Ax(t) +Bu(t) (8.27)

The problem is to find the vector K(t) of the control law

u(t) = �K(t)x(t) (8.28)

which minimizes the value of a quadratic performance index J of the form

J =

Z tf

t0
(x0Qx+ u0Ru)dt (8.29)

subject to the dynamic plant equation in (8.27). In (8.29) Q is a positive semidefinite
matrix and R is a real symmetric matrix. Q is positive semidefinite if all its principal
minors are nonnegative. The choice of the elements of Q and R allows the relative
weighting of individual state variables and individual control inputs.

To obtain a formal solution, we can use the method of Lagrange multipliers.
The constraint problem is solved by augmenting (8.27) into (8.29) using an n-vector
of Lagrange multipliers, �. The problem reduces to the minimization of the following
unconstrained function

L(x; �; u; t) = [x0Qx+ u0Ru] + �0[Ax+Bu� _x] (8.30)

The optimal values (denoted by the subscript �) are found by equating the partial
derivatives to zero.

@L
@�

= AX� +Bu� � _x� = 0 ) _x� = AX� +Bu� (8.31)

@L
@u

= 2Ru� + �0B = 0 ) u� = �1

2
R�1�0B (8.32)

@L
@x

= 2x0
�
Q+_�0 + �0A = 0 ) _� = �2Qx� �A0� (8.33)

Assume that there exists a symmetric, time varying positive definite matrix p(t) satis-
fying

� = 2p(t)x� (8.34)

Substituting (8.34) into (8.32) gives the optimal closed-loop control law

u�(t) = �R�1B0p(t)x� (8.35)
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Obtaining the derivative of (8.34), we have

_� = 2( _px� + p _x�) (8.36)

Finally equating (8.33) with (8.36), we obtain

_p(t) = �p(t)A�A0p(t)�Q+ p(t)BR�1B0p(t) (8.37)

The above equation is referred to as the matrix Riccati equation. The boundary
condition for (8.37) is p(tf ) = 0. Therefore, (8.37) must be integrated backward in
time. Since a numerical solution is performed forward in time, a dummy time variable
� = tf � t is replaced for time t. Once the solution to (8.37) is obtained the solution
of the state equation (8.31) in conjunction with the optimum control equation (8.35)
is obtained.

The function [� , p, K, t, x]=riccati is developed for the time-domain solution of
the Riccati equation. The function returns the solution of the matrix Riccati equation,
p(�), the optimal feedback gain vector k(�), and the initial state response x(t). In or-
der to use this function, the user must declare the function [A;B;Q;R; t0; tf ;x0]=system
(A;B;Q;R; t0; tf ;x0) containing system matrices and the performance index ma-
trices in an M-file named system.m.

For linear time-invariant systems, since _p = 0, when the process is of infinite
duration, that is tf =1, (8.37) reduces to the algebraic Riccati equation

pA+A0p+Q� pBR�1B0p = 0 (8.38)

The MATLAB Control System Toolbox function [k, p]=lqr2(A, B, Q, R) can be
used for the solution of the algebraic Riccati equation.

Example 8.5

Design a state feedback system for the plant described by

�
_x1
_x2

�
=

2
4 0 1 0

0 0 1
0 �4 �5

3
5
2
4 x1
x2
x3

3
5+

2
4 0

0
1

3
5u

y =
�
1 0 0

�
x

Find the optimal control law to minimize the performance index

J =

Z 10

0

�
4x1

2(t) + 3x2
2 + 2x3

2 +
1

2
u2
�
dt (8.39)

The admissible states and control values are unconstrained. The states are initially at
x1(0) = 2, x2(0) = 0 and x3(0) = �2. For this system we have

A =

2
4 0 1 0

0 0 1
0 �4 �5

3
5 ; B =

2
4 0

0
1

3
5 ; Q =

2
4 4 0 0

0 3 0
0 0 2

3
5 ; and R =

1

2

First an M-file named system.m is created and the function [A, B, Q, R, t0; tf ; x0) =
system (A, B, Q, R, t0; tf ; x0) is defined as follows.
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0 5 10 15
−2

0

2

4
Vector K(t) of the control law u(t)=−k(t)x(t)

0 5 10 15
−2

−1

0

1

2

Initial state response x
1
, x

2
, x

3

FIGURE 8.4
Optimal feedback gain vector K(t) and initial condition response x(t).

function [A,B,Q,R,t0,tf,x0]=system(A,B,Q,R,t0,tf,x0)
A=[0 1 0; 0 0 1;0 -4 -5]; B=[0;0; 1];
Q=[4 0 0; 0 3 0;0 0 2]; R=.5;
t0=0; tf=15;
x0=[2 0 -2];

The above function is saved in an M-file named system.m. Then, the following com-
mands

[tt,p,k,t,x]=riccati
subplot(2,1,1), plot(tt,k),
title('Vector K(t) of the control law u(t)=-k(t)x(t)'),
grid,
subplot(2,1,2), plot(t,x),
title('Initial state response x_1, x_2, x_3'), grid
subplot(111)

result in the control law and the response is given in Figure 8.4.

Example 8.6

For Example 8.5 use the MATLAB Control System Toolbox lqr2 to obtain the solution
to the algebraic Riccati equation.

The following commands
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A=[0 1 0; 0 0 1;0 -4 -5]; B=[0;0; 1];
Q=[4 0 0; 0 3 0;0 0 2];R=.5;
[K, p]=lqr2(A,B,Q,R)

result in

K =
2.8284 3.4780 0.9963

p =
10.5755 8.4801 1.4142
8.4801 11.0060 1.7390
1.4142 1.7390 0.4982
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List of Author-Developed Functions

cntrable determines system controllability
cnyquist maps the Nyquist path via complex function GH(s)
electsys returns the state derivatives for Example 2.2
errortf steady-state error, transfer function in polynomial form
errorzp steady-state error, transfer function in zero pole form
fbdesign minor-loop feedback design program
frcntrl frequency response design equations
frdesign frequency response design program
frqlag frequency response design phase-lag controller
frqlead frequency response design phase-lead controller
frqp frequency response design P controller
frqpd frequency response design PD controller
frqpi frequency response design PI controller
frqpid frequency response design PID controller
frqspec frequency response performance specifications
ghs returns magnitude and phase of the complex function GH(s)
ltstm Laplace transform of state transition matrix
mechsys returns the state derivatives for Example 2.1
observer observer design
obsvable determines system observability
pcomp root-locus design P controller
pdcomp root-locus design PD controller
pdlead root-locus design phase-lead controller
pendulum returns the state derivatives for Example 2.3
phlag root-locus design phase-lag controller
picomp root-locus design PI controller
pidcomp root-locus design PID controller
placeobs combined controller-observer design
placepol pole-placement design
pnetfdbk feedback compensation using passive elements
riccasim returns state derivative of Riccati equation
riccati optimal regulator design
rldesign root-locus design program
routh Routh-Hurwitz array
ss2phv transformation to control canonical form
statesim returns state derivatives for use in Riccati equation

stepzwn step response:
!n

2(1 + as)

(1 + Ts)(s2 + 2�!ns+ !n2)
stm determines the state transition matrix �(t)
system system matrices defined for use in Riccati equation
tachfdbk tachometer feedback control
timespec time-domain performance specifications
rldesigngui GUI program for root-locus design
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List of M-files for Chapter Examples

CH1EX01 CH1EX02 CH1EX03 CH1EX04 CH1EX05
CH1EX06 CH1EX07 CH1EX08 CH1EX09 CH1EX10
CH1EX11 CH1EX12 CH1EX13 CH1EX14 CH1EX15
CH1EX16 CH1EX17 CH1EX18 CH1EX19 CH1EX20
CH2ex21 CH2EX01 CH2EX02 CH2EX03 CH2EX04
CH2EX05 CH2EX06 CH2EX07 CH2EX08 CH2EX09
CH3EX01 CH3EX02 CH3EX03 CH3EX04 CH3EX05
CH3EX06 CH3EX07 CH3EX08 CH3EX09 CH3EX10
CH3EX11 CH4EX01 CH4EX02 CH4EX03 CH4EX04
CH4EX05 CH4EX06 CH4EX07 CH4EX08 CH5EX01
CH5EX02 CH5EX03 CH5EX04 CH5EX05 CH5EX06
CH5EX07 CH6EX01 CH6EX02 CH6EX03 CH6EX04
CH6EX05 CH6EX06 CH6EX07 CH6EX08 CH6EX09
CH6EX10 CH6EX11 CH6EX12 CH6EX13 CH6EX14
CH6EX15 CH6EX16 CH6EX17 CH7EX01 CH7EX02
CH7EX03 CH7EX04 CH7EX05 CH7EX06 CH7EX07
CH7EX08 CH7EX09 CH7EX10 CH7EX11 CH7EX12
CH8EX01 CH8EX02 CH8EX03 CH8EX04 CH8EX05
CH8EX06 simexa22 simexa23 simexa24 simexa25
simexa26 simexa27 simexa28 simexa29
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ABCD constants, 144
B-coefficients, 280
H constant, 463
�-Y transformation, 35
�-connected loads, 34

Proportional controller, 662

AC resistance, 105
Acceleration factor, 198
Ackermann’s formula, 571
Active power, 16
Admittance matrix, 192
All-aluminum alloy conductor, 104
All-aluminum conductor, 104
Alternators, 49
Aluminum conductor alloy-reinforced,

104
Aluminum conductor steel-reinforced,

104
Amplifier model, 555
Annual load factor, 8
ANSI, 104
Apparent power, 16
Area control error (ACE), 551
Armature mmf, 52
Armature reaction, 53
Armature short circuit time constants,

340
Array powers, 594
Attenuation constant, 153
Automatic generation control, 542

Automatic voltage regulator, 555
Autotransformers, 77
Average power, 16
Axis, 606

Balanced fault, 353
Balanced three-phase circuits, 30
Balanced three-phase fault, 354
Balanced three-phase power, 37
Balanced three-phase short circuit, 325
Bandwidth, 661
Base current, 89
Base impedance, 89
Base volt-ampere, 89
Base voltage, 89
Basic loops, 370
Bode plot, 657
Bolted fault, 354
Branches of a tree, 369
Brushless excitation, 49
Building algorithm, 369
Bundling, 105
Bus, 4
Bus admittance matrix, 192
Bus code, 223
Bus data file, 223
Bus impedance matrix, 193, 369
Bus voltages during fault, 366, 434

Capacitance of single-phase lines, 121
Capacitance of Three-phase lines, 124
Capacitance of three-phase two-circuit

lines, 126

187
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Case-sensitive, 589
Change of base, 90
Character string, 592
Characteristic impedance, 153
Characteristic polynomial, 601
Circle diagram, 163
Circular mils, 104
Closed-loop frequency response, 661
Coherent, 511
Colon, 595
Column vector, 593
Complex numbers, 599
Complex power, 19
Complex power balance, 21
Complex power flow, 26
Composite load, 530
Control area, 545
Coordination equations, 270
Copper loss, 68
Corona, 135
Cost function, 268
Cotree, 369
Critical clearing angle, 493, 496
Critical clearing time, 494, 507
Current waves, 156
Current-carrying capacity, 163
Cut set, 370
Cylindrical rotor generator, 56

Daily-load curve, 8
Daily-load factor, 8
Damped frequency of oscillation, 474
Damper, 49
Damping power, 473
Damping ratio, 474, 644
DC component, 341
DC components of stator currents, 340
DC offset, 316
DC resistance, 105
DC transmission tie line, 2
Decoupled power flow, 240
Deregulation, 3
Derivation of loss formula, 289
Direct axis, 318
Direct axis reactance, 64
Direct axis reluctance, 63

Direct axis subtransient reactance, 336
Direct axis synchronous reactance, 338,

342
Distribution, primary, 6
Distribution, secondary, 8
Diversity, 9
Division of polynomials, 603
Dot product, 594
Double line-to-ground fault, 425, 434
Driving point admittance, 192
Dynamic stability, 460

Economic dispatch neglecting losses,
268

Economic dispatch, generator limits, 276
Economic dispatch, transmission losses,

279
Edison, Thomas, 1
Effect of bundling on capacitance, 126
Effect of earth on capacitance, 127
Effect of load current, 347
Eigenvalues, 259, 599
Electric field intensity, 121
Electric industry structure, 2
Electrostatic induction, 135
Element-by-element division, 594
Element-by-element multiplication, 594
Elementary matrix operation, 596
Energy control center, 11, 528
Equal-area criterion, 486
Equivalent � model, 154
Equivalent circuit of transformer, 64
Equivalent leakage impedance, 69
Excitation voltage, 53
Exciter, 49
Exciter model, 556
Extra-high voltage, 2, 104

Fast decoupled power flow solution, 240
Fault analysis using Zbus, 363
Flux linkage, 50, 106, 320
Frequency bias factor, 548
Frequency response, 657
Frequency response design, 662
Fuel-cost curve, 267
Function file, 588
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Fundamental cut set, 370

Gain factor, 641
Gain margin, 659
Gauss-Seidel, 195
Gauss-Seidel power flow solution, 209
Generalized circuit constants, 144
Generation, 4
Generator model, 529, 557
Generator voltage regulation, 55
Geometric mean distance, 110
Geometric mean radius, 110
GMR of bundle conductors, 118
Governor model, 532
Gradient method, 263, 270, 283
Gradient vector, 259
Graph of network, 369
Graphics, 605
Graphics hard copy, 607

Handle graphics, 614
Heat rate, 267
Help, 587
Help Desk, 588
Hessian matrix, 259
Hyperbolic functions, 154

Ideal transformer, 65
Impedance matrix, 193, 369
Impedance triangle, 20
Incident wave, 156
Incremental fuel cost, 267
Incremental fuel-cost curve, 267
Incremental production cost, 270
Incremental transmission loss, 281
Inductance due to external flux link-

age, 108
Inductance of single conductor, 106
Inductance of composite conductors, 115
Inductance of single-phase lines, 109
Inductance of three-phase lines, 112
Inductance of three-phase two-circuit

lines, 119
Inductance spacing factor, 110
Inductances of salient-pole machines,

320

Inequality constraints, 264
Inertia constant, 463
Infinite bus, 56
Inner product, 594
Input-output curve, 267
Installed generation capacity, 4
Installing Text toolbox, 587
Instantaneous power, 15
Integral controller, 542
Internal flux linkage, 107
Internal inductance, 107
Iron loss, 69

Jacobian matrix, 204, 233

Kinetic energy, 462
Kron reduction formula, 513
Kron’s loss formula, 279
Kuhn-Tucker, 265, 276

Lagrange multiplier, 260, 280, 577
Line compensation, 165
Line currents, 435
Line data file, 223
Line flows, 212
Line inductance, 120
Line loadability equation, 164
Line losses, 212
Line performance program, 171
Line resistance, 105
Line voltage, 32
Line voltage regulation, 144
Line-to-line fault, 423, 433
Line-to-line short circuit, 330, 333
Linear quadratic regulator, 576
Links of a cotree, 369
Load bus, 208
Load flow, 189
Load frequency control, 528
Load impedance, 90
Load model, 530
Loads, 8
Logical statements, 614
Long line model, 151
Loops, 614
Loss coefficients, 280
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Machine model for transient analyses,
335

Magnetic field induction, 133
Magnetic field intensity, 106
Magnetic flux density, 107
Matrix division, 597
Matrix multiplication, 597
Medium length lines, 147
Medium line model, 147
Mil, 104
Minimum phase transfer function, 660
Moment of inertia, 461
Momentary duty, 341
Multimachine system, 511
Multimachine transient stability, 514
Mutual inductance, 111

Negative phase sequence, 30, 401
Newton-Raphson, 200
Newton-Raphson power flow solution,

232
Nominal � model, 147
Nonlinear algebraic equations, 195
Nonlinear function optimization, 258
Nonlinear programming, 258
Nonlinear systems, 620
Numerical solution of swing equation,

504
Nyquist, 661
Nyquist diagram, 660
Nyquist path, 660
Nyquist plot, 658
Nyquist stability criterion, 660

One vector, 595
One-line diagram, 91
One-machine system connected to in-

finite bus, 472
Open circuit transient time constant, 337
Open line, 167
Open-circuit test, 68
Operating cost of thermal plant, 267
Optimal control design, 576
Optimal dispatch of generation, 257
Output format, 590
Overhead transmission lines, 103

Overshoot, 644

P-Q bus, 208
P-V bus, 208
Pacific Intertie, 2
Park transformation, 321
Partial fraction expansion, 604
Path Browser, 587
PD controller, 646, 649
Peak load, 8
Peak time, 644
Penalty factor, 282
Per phase basis, 37
Per-unit system, 88
Permeability of free space, 107
Permittivity of free space, 121
Phase constant, 153
Phase margin, 659
Phase sequence, 30
Phase variables, 622
Phase voltage, 32
Phase-lag design, 648
Phase-lead design, 647
PI controller, 646, 650
PID controller, 564, 650
PID design, 649
Plant factor, 9
Plant output, 622
Polar plot, 658
Polynomial curve fitting, 603
Polynomial evaluation, 604
Polynomial roots, 601
Pools, 3
Positive phase sequence, 30, 400
Positive-sequence subtransient reactance,

411
Potential difference between two points,

121
Potential difference, multiconductors,

123
Power angle, 54, 461
Power angle characteristics, 57
Power circle diagram, 163
Power factor, 16
Power factor control, 56
Power factor correction, 23
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Power flow analysis, 189
Power flow data preparation, 223
Power flow equation, 189, 209
Power flow programs, 222
Power flow solution, 208
Power flow through transmission lines,

161
Power flow, decoupled, 240
Power flow, Gauss-Seidel, 209
Power flow, Newton-Raphson, 232
Power grid, 2
Power in single-phase ac circuit, 15
Power pool, 2
Power residuals, 234
Power system control, 527
Power system Toolbox, 665
Power transformers, 64
Power transmission capability, 163
Power triangle, 20
Power-angle curve, 466
Primary feeder, 8
Prime mover model, 531
Prime movers, 4
Product of polynomials, 603
Production cost, 268
Propagation constant, 153
Proportional controller, 646

Quadratic performance index, 576
Quadrature axis, 318
Quadrature axis reactance, 64
Quadrature axis reluctance, 63

Rate feedback, 562
Reactance of armature reaction, 54
Reactive power, 17
Reactive power and voltage control, 555
Reactive power flow, 59
Reactive transmission line loss, 163
Real power, 16
Real transmission line loss, 163
Reference bus, 208
Reflected wave, 156
Regulated bus, 208
Regulated bus data, 224
Regulating transformers, 86

Relative stability, 640, 658
Reluctance power, 64
Reset action, 542
Resonant frequency, 661
Resonant peak magnitude, 661
Riccati equation, 577
Rise time, 644
Root locus, 641
Root-locus design, 645
Rotor, 49
Round rotor, 49
Routh-Hurwitz array, 641
Row vector, 593
Running MATLAB, 587

Salient-pole rotor, 49
Salient-pole synchronous generator, 62
SCTM, 402
Self-inductance, 111
Semicolon, 590
Sensor model, 557
Sequence impedance of lines, 409
Sequence impedance of loads, 407
Sequence impedance of machines, 410
Sequence impedances, 406
Sequence impedances of transformer,

411
Sequence network of a generator, 418
Sequence networks, 420
Series capacitor compensation, 168
Settling time, 644
Short circuit current in lines, 366
Short circuit subtransient time constant,

336
Short circuit transient reactance, 337
Short circuit transient time constant, 337
Short length line, 143
Short line model, 143
Short-circuit test, 69
Shunt capacitor compensation, 168
Shunt reactors, 165
Simplified Nyquist criterion, 660
Simulation diagram, 623
SIMULINK, 623
Single line-to-ground fault, 421, 432
Slack bus, 208
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Small disturbances, 471
Solid fault, 354
Solution of differential equations, 615
Sources of electricity, 5
Space phasor, 51
Sparse matrix, 193
Speed governing system, 532
Speed regulation, 533
Stabilizer, 562
Standard transmission voltages, 6
Stanley, William, 1
State equation, 622
State feedback, 569
State feedback control, 569
State variables, 622
Static stability limits, 58
Stator, 49
Steady-state error, 642
Steady-state period, 315
Steady-state stability limit, 466
Steel towers, 103
Subplot, 612
Substation, 6
Subtransient period, 315
Subtransient reactance, 344
Subtransient time constant, 344
Subtransmission, 6
Surge impedance, 157
Surge impedance loading (SIL), 159
Swing bus, 208
Swing equation, 464
Switchgear, 11
Symmetrical components, 399
Synchronizing coefficient, 472
Synchronizing power coefficient, 477
Synchronous condenser, 165
Synchronous generator phasor diagram,

55
Synchronous generators, 49
Synchronous machine transient analy-

sis, 314
Synchronous machine transients, 318
Synchronous reactance, 54
Synchronous speed, 51
Synchronously rotating reference frame,

318

Tap changing transformers, 83, 220
Taylor’s series, 200
Temperature constant, 105
Tesla, Nikola, 1
Thévenin’s impedance, 356
Thévenin’s voltage, 356
Thermal loading limit, 163
Three-dimensional plots, 613
Three-phase transformer connections,

74
Three-phase transformer model, 76
Three-winding transformer model, 82
Three-winding transformers, 81
Tie-line bias control, 549
Time-domain performance specifications,

644
Torque angle, 461
Transfer admittance, 192
Transfer function, 529, 638
Transformer bus data, 224
Transformer efficiency, 70
Transformer equivalent circuit, 66
Transformer leakage flux, 66
Transformer magnetizing current, 66
Transformer maximum efficiency, 71
Transformer mutual flux, 66
Transformer no-load current, 66
Transformer performance, 70
Transformer voltage regulation, 71
Transformer zero-sequence impedance,

412
Transient period, 315
Transient phenomena, 315
Transient reactance, 343
Transient stability, 460
Transient time constant, 343
Transmission and distribution, 6
Transmission line parameters, 102
Transmission matrix, 149
Transpose, 593
Transposed line, 114
Tree of network, 369
Turbine model, 531
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Ultra-high voltage, 104
Unbalanced faults, 399
Unbalanced short circuit, 330
Unconstrained parameter optimization,

258
Utility matrices, 599
Utilization factor, 9

V curve, 57
Var, 17
Variables, 589
Vector operation, 593
Velocity of propagation, 157
Voltage control of transformers, 83
Voltage regulation, 144
Voltage waves, 156
Voltage-controlled bus, 208

Wave length, 157

Y-connected loads, 32

Zero phase sequence, 401
Zero vector, 595
Zero-sequence reactance of lines, 410
Zero-sequence subtransient reactance,

411
Zero-sequence variable, 325
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