Appendix 3B

MATLAB Functions for Modeling and Time-domain analysis

MATLAB control system Toolbox contain the following functions for the time-domain response

step	Step response.
impulse	Impulse response.
initial	Response of state-space system with given initial state.
lsim	Response to arbitrary inputs.
gensig	Generate input signal for LSIM.
damp	Natural frequency and damping of system poles.
ltiview	Response analysis GUI (LTI Viewer).

Given a transfer function of a closed-loop control system, the function step(num, den) produces the step response plot with the time vector automatically determined. If the closed-loop system is defined in state space, we use $\operatorname{step}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}), \operatorname{step}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{t})$ or $\operatorname{step}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D}, \mathbf{i u}, \mathbf{t})$ uses the supplied time vector \mathbf{t}. The scalar iu specifies which input is to be used for the step response. If the above commands are invoked with the lefthand argument $[\mathbf{x}, \mathbf{y}, \mathbf{t}]$, the output vector \mathbf{y}, the state response \mathbf{x}, and the time vector \mathbf{t} are returned, and we need to use plot function to obtain the plot. Similarly for impulse, initial, and lsim.

Example B. 1

Obtain the unit step response for the system with the following closed-loop transfer function

$$
\frac{C(s)}{R(s)}=\frac{25(1+0.4 s)}{(1+0.16 s)\left(s^{2}+6 s+25\right)}
$$

Use the damp function to obtain the roots of the characteristic equation, the corresponding damping function, and natural frequencies

The following commands

$$
\begin{array}{ll}
\text { num }=25^{*}\left[\begin{array}{ll}
0.4 & 1
\end{array}\right] ; \\
\text { den }=\operatorname{conv}\left(\left[\begin{array}{lll}
1 & 0.16
\end{array}\right],\left[\begin{array}{lll}
1 & 6 & 25
\end{array}\right]\right) ; & \% \text { multiplies the two polynomials } \\
\text { step(num, den), grid } & \% \text { obtains the step response plot } \\
\mathrm{T}=\operatorname{tf}(\text { num, den }) \\
\operatorname{damp}(\mathrm{T})
\end{array} \quad \begin{aligned}
& \% \text { returns roots of C.E., damping ratio, wn }
\end{aligned}
$$

Figure B. 1 Step response of Example 1

Eigenvalue	Damping	Freq. $(\mathrm{rad} / \mathrm{s})$
$-3.00 \mathrm{e}+000+4.00 \mathrm{e}+000 \mathrm{i}$	$6.00 \mathrm{e}-001$	$5.00 \mathrm{e}+000$
$-3.00 \mathrm{e}+000-4.00 \mathrm{e}+000 \mathrm{i}$	$6.00 \mathrm{e}-001$	$5.00 \mathrm{e}+000$
$-6.25 \mathrm{e}+000$	$1.00 \mathrm{e}+000$	$6.25 \mathrm{e}+000$

Example B. 2

The closed-loop transfer function of a control system is described by the following thirdorder transfer function

$$
\frac{C(s)}{R(s)}=T(s)=\frac{750}{s^{3}+36 s^{2}+205 s+750}
$$

(a) Find the dominant poles of the system
(b) Find a reduced-order model
(c) Obtain the step response of the third-order system and the reduced-order system on the same figure plot
(a) The command

$$
\begin{aligned}
& \operatorname{den}=\left[\begin{array}{llll}
1 & 36 & 205 & 750
\end{array}\right] ; \\
& \mathrm{r}=\operatorname{roots}(\operatorname{den})
\end{aligned}
$$

result in

$$
\begin{aligned}
& \mathrm{r}= \\
&-30 \\
&-3+4 \mathrm{i} \\
&-3-4 \mathrm{i}
\end{aligned}
$$

Therefore the transfer function is

$$
T(s)=\frac{750}{(s+30)\left(s^{2}+6 s+25\right)}=\frac{25}{(1+0.0333 s)\left(s^{2}+6 s+25\right)}
$$

The time constant of the real pole at $s=-30$ is $\tau_{1}=1 / 30$ which is negligible compared to the time constant of $\tau_{2}=1 / 3$ for the dominant poles $-3 \pm j 4$. Therefore the approximate reduced model transfer function is

$$
T(s) \simeq \frac{25}{\left(s^{2}+6 s+25\right)}
$$

We use the following commands

$$
\begin{aligned}
& \text { num1 }=750 ; \quad \text { \% third-order system num } \\
& \text { den } 1=\left[\begin{array}{llll}
1 & 36 & 205 & 750
\end{array}\right] ; \quad \% \text { third-order system den } \\
& \text { num2 }=25 ; \quad \text { \% reduced-order system num } \\
& \operatorname{den} 2=\left[\begin{array}{lll}
1 & 6 & 25
\end{array}\right] ; \quad \quad \% \text { reduced-order system den } \\
& \mathrm{t}=0 \text { : 0.01: 2; } \\
& \mathrm{c} 1=\operatorname{step}(\text { num1, den } 1, \mathrm{t}) ; \quad \% \text { third-order system step response } \\
& \mathrm{c} 2=\operatorname{step}(\text { num } 2, \text { den } 2, \mathrm{t}) ; \quad \% \text { reduced-order system step response } \\
& \operatorname{plot}(\mathrm{t}, \mathrm{c} 1, \text { ' } \mathrm{b} \text { ', } \mathrm{t} \text {, c2, 'r') } \quad \% \text { plots both response on the same figure } \\
& \text { grid, xlabel('t, seconds'), ylabel('c(t)') } \\
& \text { legend('Third-order', 'Reduced-order') }
\end{aligned}
$$

Figure B. 2 Third-order and reduced-order Step response step responses of Example 1

The LTI Viewer

The Control System Toolbox LTI Viewer is a GUI that simplifies the analysis of linear, time-invariant systems. You use the LTI Viewer to view and compare the response plots of several linear models at the same time. You can generate time and frequency response plots to inspect key response parameters, such as rise time, maximum overshoot, and stability margins. Using mouse-driven interactions, you can select input and output channels from MIMO systems. The LTI Viewer can display up to six different plot types simultaneously, including step, impulse, Bode (magnitude and phase or magnitude only), Nyquist, Nichols, sigma, and pole/zero.

The command syntax is

```
ltiview('plot type', sys, extra)
```

where sys is the transfer function name and 'plot type' is one of the following responses:

step	bode
impulse	nyquist
initial	nichols
Isim	sigma

Extra is an optional argument specifying the final time. Once an LTI Viewer is opened, the right-click on the mouse allows you to change the response type and obtain the system time-domain and frequency domain specifications, including:

Plot Type	changes the plot type
Systems	selects any of the models loaded in the LTI Viewer
Characteristics	displays key response characteristics and parameters
Zoom	zooms in and out of plot regions
Grid	adds grids to your plots
Properties	Property Editor, where you can customize plot attributes

Example B. 3

Use the Itiview to obtain the step response and the time-domain specifications for the control system shown in Figure 3.

Figure B. 3 Block diagram for Example 3

The following commands

$$
\begin{array}{ll}
\mathrm{Gc}=\operatorname{tf}\left(\left[\begin{array}{ll}
50 & 70
\end{array}\right],\left[\begin{array}{ll}
1 & 7
\end{array}\right]\right) & \text { \% transfer function Gc } \\
\mathrm{Gp}=\operatorname{tf}\left([1],\left[\begin{array}{lll}
1 & 5 & 4
\end{array}\right]\right) ; & \% \text { transfer function } \mathrm{Gp} \\
\mathrm{H}=1 ; & \\
\mathrm{G}=\operatorname{series}(\mathrm{Gc}, \mathrm{Gp}) & \text { \% connects Gc \& Gp in cascade } \\
\mathrm{T}=\text { feedback }(\mathrm{G}, 1) & \text { \% obtains the closed loop transfer function } \\
\text { litiview('step', T) } &
\end{array}
$$

result in
Transfer function:

$$
\begin{aligned}
& 50 \mathrm{~s}+70 \\
& s^{\wedge} 4+12 s^{\wedge} 3+39 s^{\wedge} 2+78 s+70
\end{aligned}
$$

The system step response is obtained as shown in Figure 4. The mouse right-click is used to obtain the time-domain specifications. From File menu you can select Print to Figure option to obtain a Figure Window for the LTI Viewer for editing the graph.

Figure B. 4 Step response of Example B. 3
For the time-domain analysis it is recommended to use the LTI Viewer, this will make it possible to obtain the time-domain specification with a simple right-click on the mouse.

In addition it allows you to select the Plot type, which would enable you to find other type of time-domain responses as well as the frequency domain responses and specifications.

MATLAB Functions for Numerical Solution of Differential Equations

There are many other more powerful techniques for the numerical solution of nonlinear equations. A popular technique is the Runge-Kutta method, which is based on formulas derived by using an approximation to replace the truncated Taylor series expansion. The interested reader should refer to textbooks on numerical techniques. MATLAB provides several powerful functions for the numerical solution of differential equations. Two of the functions employing the Runge-Kutta-Fehlberg methods are ode23 and ode45, based on the Fehlberg second- and third-order pair of formulas for medium accuracy and forthand fifth-order pair for higher accuracy. These functions are as follows:
ode23 Solve non-stiff differential equations, low order method.
ode45 Solve non-stiff differential equations, medium order method
ode113 Solve non-stiff differential equations, variable order method.
ode15S Solve stiff differential equations and DAEs, variable order method.
ode23S Solve stiff differential equations, low order method.
ode23T Solve moderately stiff ODEs and DAEs, trapezoidal rule.
ode23TB Solve stiff differential equations, low order method.
The n th-order differential equation must be transformed into n first order differential equations and must be placed in an M-file that returns the state derivative of the equations. The formats for these functions are

$$
[t, x]=\text { ode } 23(\text { 'xprime', tspan, } x 0, \text { option })
$$

where $\mathbf{t s p a n}=[\mathbf{t 0}, \mathbf{t f i n a l}]$ is the time interval for the integration and $\mathbf{x 0}$ is a column vector of initial conditions at time $\mathbf{t 0}$. xprime is the state derivative of the equations, defined in a file named xprime.m. Commonly used options are scalar relative error tolerance 'RelTol' (1e-3 by default) and vector of absolute error tolerances 'AbsTol' (all components le-6 by default)

Example B. 4

Using MATLAB function ode23 obtain the numerical solution for the differential equation given by

$$
\frac{d^{2} \theta}{d t^{2}}+\frac{B}{m} \frac{d \theta}{d t}+\frac{g}{l} \sin \theta=0
$$

The above equation describes the motion of the simple pendulum derived in Lab Session 4 Case Study2. Where $m=0.5 \mathrm{Kg}, l=0.613 \mathrm{~m}, B=0.05 \mathrm{Kg}-\mathrm{s} / \mathrm{m}$, and $g=9.81 \mathrm{~m} / \mathrm{s}^{2}$.
The initial angle at time $t=0$ is $\theta(0)=0.5$ and $\dot{\theta}(0)=0$.

First we write the above equation in state variable form. Let $x_{1}=\theta$, and $x_{2}=\dot{\theta}$ (angular velocity), then

$$
\begin{aligned}
& \dot{x}_{1}=x_{2} \\
& \dot{x}_{2}=-\frac{B}{m} x_{2}-\frac{g}{l} \sin x_{1}
\end{aligned}
$$

The above equations are defined in a function file named pendulumeq.m as follows

```
function xdot = pendulumeq(t, x); % Returns the state derivative
m = 0.5; I = 0.613; B = 0.05; g = 9.81;
xdot = [x(2); -B/m*x(2)-g/|*}\operatorname{sin}(x(1))]
```

In a separate file named Lab3ExB4.m, the MATLAB function ode23 is used to obtain the solution of the given differential equations (defined in the file pendulumeq.m from 0 to 20 seconds.

```
tspan = [0, 20];
x0 = [0.5; 0];
```


\% time interval

\% initial condition

```
[t, x] = ode23('pendulumeq', tspan, x0);
theta = x(:, 1);omega = x(:, 2);
figure(1), plot(t, theta, 'b', t, omega, 'r'), grid
xlabel('t, sec'), legend('0(t)', 'lomega(t)')
figure(2), plot(theta, omega);
xlabel('ltheta, rad'), ylabel('lomega rad/s')
title('State trajectory')
```

Run Lab3ExB4 at the MATLAB prompt, the result is

Figure B. 5 Response of the pendulum described in Example B. 4

Example B. 5

Using MATLAB function ode23 obtain the numerical solution for the nonlinear simultaneous differential equation given by

$$
\begin{aligned}
& -x_{1}+2 x_{2}+[20-40 * \cos (0.02 * t)] \frac{d x_{1}}{d t}+30 * \sin (0.02 * t) \frac{d x_{2}}{d t}=13 * \exp (-t) * \sin (t) \\
& 3 x_{1}-4 x_{2}+[20 * \sin (0.02 * t)] \frac{d x_{1}}{d t}+\left[10-40 * \cos (0.02 * t) \frac{d x_{2}}{d t}=40 * \exp (-0.2 t) * \cos (t)\right.
\end{aligned}
$$

Given $x_{1}(0)=1$, and $x_{2}(0)=-1$
Writing the above equations in matrix form, we have

$$
\left[\begin{array}{cc}
-1 & 2 \\
3 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]+\left[\begin{array}{cc}
20-40 \cos 0.02 t & 30 \sin 0.02 t \\
20 \sin 0.02 t & 10-40 \cos 0.02 t
\end{array}\right]\left[\begin{array}{l}
\dot{x}_{1} \\
\dot{x}_{2}
\end{array}\right]=\left[\begin{array}{c}
13 e^{-t} \sin t \\
40 e^{-0.2 t} \cos t
\end{array}\right]
$$

Writing in compact form

$$
R X+L \dot{X}=V
$$

Solving for \dot{X}, we get

$$
\dot{X}=L^{-1}[V-R X] \quad \text { (Note the correction) }
$$

The above equations are defined in a function file named nlseq.m as follows
function $\mathrm{xdot}=\mathrm{nlseq}(\mathrm{t}, \mathrm{x})$; \quad \% Returns the state derivative
$R=\left[\begin{array}{lll}-1 & 2 ; & 3\end{array}-4\right] ; L=\left[20-40^{*} \cos \left(0.02^{*} t\right) \quad 30 * \sin \left(0.02^{*} t\right)\right.$ $\left.20 * \sin \left(0.02^{*} t\right) \quad 10-40 * \cos \left(0.02^{*} t\right)\right]$;
$\mathrm{V}=\left[13^{*} \exp (-\mathrm{t})^{*} \sin (\mathrm{t}) ; 40^{*} \exp \left(-0.2^{*} \mathrm{t}\right){ }^{*} \cos (\mathrm{t})\right]$;
$x d o t=\operatorname{inv}(L) *\left(V-R^{*} x\right)$;
In a separate file named Lab3ExB5.m, the MATLAB function ode23 is used to obtain the solution of the given differential equations (defined in the nlseq.m from 0 to 30 seconds

```
tspan \(=[0,30] ; \quad \%\) time interval
\(\mathrm{x} 0=[1 ;-1] ; \quad \%\) initial condition
[ \(\mathrm{t}, \mathrm{x}]=\) ode23('nlseq', tspan, x 0 );
\(\operatorname{plot}(\mathrm{t}, \mathrm{x})\), grid
xlabel('t, sec'), legend('x_1(t)', 'x_2(t)')
```


Figure B. 6 Response of the system described in Example B. 5

