
Appendix 3B
MATLAB Functions for Modeling and Time-domain analysis

MATLAB control system Toolbox contain the following functions for the time-domain
response

step Step response.
 impulse Impulse response.
 initial Response of state-space system with given initial state.
 lsim Response to arbitrary inputs.
 gensig Generate input signal for LSIM.
 damp Natural frequency and damping of system poles.
 ltiview Response analysis GUI (LTI Viewer).

Given a transfer function of a closed-loop control system, the function step(num, den)
produces the step response plot with the time vector automatically determined. If the
closed-loop system is defined in state space, we use step(A, B, C, D), step(A, B, C, D, t)
or step(A, B, C, D, iu, t) uses the supplied time vector t. The scalar iu specifies which
input is to be used for the step response. If the above commands are invoked with the left-
hand argument [x, y, t], the output vector y, the state response x, and the time vector t are
returned, and we need to use plot function to obtain the plot. Similarly for impulse,
initial, and lsim.

Example B.1

Obtain the unit step response for the system with the following closed-loop transfer
function

2
() 25(1 0.4)
() (1 0.16)(6 25)
C s s
R s s s s

+
=

+ + +

Use the damp function to obtain the roots of the characteristic equation, the
corresponding damping function, and natural frequencies

The following commands

num=25*[0.4 1];
den = conv([1 0.16], [1 6 25]); % multiplies the two polynomials
step(num, den), grid % obtains the step response plot
T = tf(num, den)
damp(T) % returns roots of C.E., damping ratio, wn

 3B.1

Figure B.1 Step response of Example 1

 Eigenvalue Damping Freq. (rad/s)
 -3.00e+000 + 4.00e+000i 6.00e-001 5.00e+000
 -3.00e+000 - 4.00e+000i 6.00e-001 5.00e+000
 -6.25e+000 1.00e+000 6.25e+000

Example B.2

The closed-loop transfer function of a control system is described by the following third-
order transfer function

3 2
() 750()
() 36 205 750
C s T s
R s s s s

= =
+ + +

(a) Find the dominant poles of the system
(b) Find a reduced-order model
(c) Obtain the step response of the third-order system and the reduced-order system on
 the same figure plot

(a) The command

 den = [1 36 205 750];
 r = roots(den)
result in
 r =
 -30
 -3 + 4i
 -3 - 4i

 3B.2

Therefore the transfer function is

2 2
750 25()

(30)(6 25) (1 0.0333)(6 25)
T s

s s s s s s
= =

+ + + + + +

The time constant of the real pole at 30s = − is 1 1/ 30τ = which is negligible compared to
the time constant of 2 1/ 3τ = for the dominant poles 3 4j− ± . Therefore the approximate
reduced model transfer function is

2
25()

(6 25
T s

s s+ +)

We use the following commands

 num1 = 750; % third-order system num

den1 = [1 36 205 750]; % third-order system den
num2=25; % reduced-order system num
den2 = [1 6 25]; % reduced-order system den
t = 0: 0.01: 2;
c1 = step(num1, den1, t); % third-order system step response
c2 = step(num2, den2, t); % reduced-order system step response
plot(t, c1, 'b', t, c2, 'r') % plots both response on the same figure
grid, xlabel('t, seconds'), ylabel('c(t)')
legend('Third-order', 'Reduced-order')

Figure B.2 Third-order and reduced-order Step response step responses of

Example 1

 3B.3

The LTI Viewer

The Control System Toolbox LTI Viewer is a GUI that simplifies the analysis of linear,
time-invariant systems. You use the LTI Viewer to view and compare the response plots
of several linear models at the same time. You can generate time and frequency response
plots to inspect key response parameters, such as rise time, maximum overshoot, and
stability margins. Using mouse-driven interactions, you can select input and output
channels from MIMO systems. The LTI Viewer can display up to six different plot types
simultaneously, including step, impulse, Bode (magnitude and phase or magnitude only),
Nyquist, Nichols, sigma, and pole/zero.

The command syntax is

 ltiview(‘plot type’, sys, extra)

where sys is the transfer function name and ‘plot type’ is one of the following responses:

 step bode
 impulse nyquist
 initial nichols
 lsim sigma

Extra is an optional argument specifying the final time. Once an LTI Viewer is opened,
the right-click on the mouse allows you to change the response type and obtain the
system time-domain and frequency domain specifications, including:

Plot Type changes the plot type
Systems selects any of the models loaded in the LTI Viewer
Characteristics displays key response characteristics and parameters
Zoom zooms in and out of plot regions
Grid adds grids to your plots
Properties Property Editor, where you can customize plot attributes

Example B.3

Use the ltiview to obtain the step response and the time-domain specifications for the
control system shown in Figure 3.

−

()R s 50 70
7

s
s
+
+

1
(1)(4)s s s+ +

()C s

()cG s ()pG s

Figure B.3 Block diagram for Example 3

 3B.4

The following commands

Gc = tf([50 70], [1 7]) % transfer function Gc
Gp = tf([1], [1 5 4 0]); % transfer function Gp
H = 1;
G = series(Gc, Gp) % connects Gc & Gp in cascade
T = feedback(G, 1) % obtains the closed loop transfer function
ltiview('step', T)

result in

Transfer function:

 50 s + 70

s^4 + 12 s^3 + 39 s^2 + 78 s + 70

The system step response is obtained as shown in Figure 4. The mouse right-click is used
to obtain the time-domain specifications. From File menu you can select Print to Figure
option to obtain a Figure Window for the LTI Viewer for editing the graph.

Figure B.4 Step response of Example B.3

For the time-domain analysis it is recommended to use the LTI Viewer, this will make it
possible to obtain the time-domain specification with a simple right-click on the mouse.

 3B.5

In addition it allows you to select the Plot type, which would enable you to find other
type of time-domain responses as well as the frequency domain responses and
specifications.

MATLAB Functions for Numerical Solution of Differential Equations

There are many other more powerful techniques for the numerical solution of nonlinear
equations. A popular technique is the Runge-Kutta method, which is based on formulas
derived by using an approximation to replace the truncated Taylor series expansion. The
interested reader should refer to textbooks on numerical techniques. MATLAB provides
several powerful functions for the numerical solution of differential equations. Two of
the functions employing the Runge-Kutta-Fehlberg methods are ode23 and ode45, based
on the Fehlberg second- and third-order pair of formulas for medium accuracy and forth-
and fifth-order pair for higher accuracy. These functions are as follows:

ode23 Solve non-stiff differential equations, low order method.
ode45 Solve non-stiff differential equations, medium order method
ode113 Solve non-stiff differential equations, variable order method.
ode15S Solve stiff differential equations and DAEs, variable order method.
ode23S Solve stiff differential equations, low order method.
ode23T Solve moderately stiff ODEs and DAEs, trapezoidal rule.
ode23TB Solve stiff differential equations, low order method.

The nth-order differential equation must be transformed into n first order differential
equations and must be placed in an M-file that returns the state derivative of the
equations. The formats for these functions are

 [t, x] = ode23('xprime', tspan, x0, option)

where tspan =[t0, tfinal] is the time interval for the integration and x0 is a column
vector of initial conditions at time t0. xprime is the state derivative of the equations,
defined in a file named xprime.m. Commonly used options are scalar relative error
tolerance 'RelTol' (1e-3 by default) and vector of absolute error tolerances 'AbsTol' (all
components 1e-6 by default)

Example B.4

Using MATLAB function ode23 obtain the numerical solution for the differential
equation given by

2

2 sin 0d B d g
dt m dt l
θ θ θ+ + =

 3B.6

The above equation describes the motion of the simple pendulum derived in Lab Session
4 Case Study2. Where Kg, 0.5m = 0.613l = m, 0.05B = Kg-s/m, and .
The initial angle at time is

9.81g = 2m/s
0t = (0) 0.5θ = and (0) 0θ = .

First we write the above equation in state variable form. Let 1x θ= , and 2 x θ= (angular
velocity), then

1 2

2 2 sinx

x x
B gx x
m l

=

= − − 1

The above equations are defined in a function file named pendulumeq.m as follows

 function xdot = pendulumeq(t, x); % Returns the state derivative

m = 0.5; l = 0.613; B = 0.05; g = 9.81;
xdot = [x(2); -B/m*x(2)-g/l*sin(x(1))];

In a separate file named Lab3ExB4.m, the MATLAB function ode23 is used to obtain the
solution of the given differential equations (defined in the file pendulumeq.m from 0 to
20 seconds.

tspan = [0, 20]; % time interval
x0 = [0.5; 0]; % initial condition
[t, x] = ode23('pendulumeq', tspan, x0);
theta = x(:, 1);omega = x(:, 2);
figure(1), plot(t, theta, 'b', t, omega, 'r'), grid
xlabel('t, sec'), legend('\theta(t)', '\omega(t)')
figure(2), plot(theta, omega);
xlabel('\theta, rad'), ylabel('\omega rad/s')
title('State trajectory')

Run Lab3ExB4 at the MATLAB prompt, the result is

Figure B.5 Response of the pendulum described in Example B.4

 3B.7

Example B.5

Using MATLAB function ode23 obtain the numerical solution for the nonlinear
simultaneous differential equation given by

1 2
1 2

1 2
1 2

2 [20 40*cos(0.02*)] 30*sin(0.02*) 13*exp(-)*sin()

3 4 [20*sin(0.02*)] [10 40*cos(0.02*) 40*exp(0.2)*cos()

dx dxx x t t t t
dt dt

dx dxx x t t t
dt dt

− + + − + =

− + + − = −

1(0) 1x = 2 (0) 1x = −

t

t

Given , and

Writing the above equations in matrix form, we have

1 1
0.2

2 2

1 2 20 40cos 0.02 30sin 0.02 13 sin
3 4 20sin 0.02 10 40cos 0.02 40 cos

t

t

x xt t e
x xt t e t

−

−

 − −
+ = − −

Writing in compact form
RX LX V+ =

Solving for X , we get
1[]X L V RX−= − (Note the correction)

The above equations are defined in a function file named nlseq.m as follows

function xdot = nlseq(t, x); % Returns the state derivative
R = [-1 2; 3 -4]; L = [20-40*cos(0.02*t) 30*sin(0.02*t)
 20*sin(0.02*t) 10-40*cos(0.02*t)];
V = [13*exp(-t)*sin(t); 40* exp(-0.2*t) *cos(t)];
xdot = inv(L)*(V - R*x);

In a separate file named Lab3ExB5.m, the MATLAB function ode23 is used to obtain the
solution of the given differential equations (defined in the nlseq.m from 0 to 30 seconds

tspan = [0, 30]; % time interval
x0 = [1; -1]; % initial condition
[t, x] = ode23('nlseq', tspan, x0);
plot(t, x), grid
xlabel('t, sec'), legend('x_1(t)', 'x_2(t)')

 3B.8

Figure B.6 Response of the system described in Example B.5

 3B.9

	Appendix 3B
	MATLAB Functions for Modeling and Time-domain analysis
	Example B.1
	Example B.2
	The LTI Viewer
	Example B.3
	MATLAB Functions for Numerical Solution of Differential Equations
	Example B.4
	Example B.5

