
 
 

Root-Locus Design 
 
The root-locus can be used to determine the value of the loop gain , which results in a 
satisfactory closed-loop behavior. This is called the proportional compensator or 
proportional controller and provides gradual response to deviations from the set point. 
There are practical limits as to how large the gain can be made. In fact, very high gains 
lead to instabilities. If the root-locus plot is such that the desired performance cannot be 
achieved by the adjustment of the gain, then it is necessary to reshape the root-loci by 
adding the additional controllerG to the open-loop transfer function.G  must be 
chosen so that the root-locus will pass through the proper region of the -plane. In many 
cases, the speed of response and/or the damping of the uncompensated system must be 
increased in order to satisfy the specifications. This requires moving the dominant 
branches of the root locus to the left.  
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The proportional controller has no sense of time, and its action is determined by the 
present value of the error. An appropriate controller must make corrections based on the 
past and future values. This can be accomplished by combining proportional with integral 
action or proportional with derivative action . One of the most common controllers 
available commercially is the  controller. Different processes are suited to different 
combinations of proportional, integral, and derivative control. The control engineer's task 
is to adjust the three gain factors to arrive at an acceptable degree of error reduction 
simultaneously with acceptable dynamic response. The compensator transfer function is 
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For or controllers, the appropriate gain is set to zero. PD PI
 
Other compensators, are lead, lag, and lead-lag compensators. A first-order compensator 
having a single zero and pole in its transfer function is 
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The pole and zero are located in the left half s-plane as shown in Figure 1.   
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Figure 1 Compensator phase angle contribution 
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For a given 1 1s 1jσ ω= + , the transfer function angle given by 
0

(c z p0
)θ θ θ= − is positive 

if as shown in Figure 1 (a), and the compensator is known as the phase-lead 
controller. On the other hand if as shown in Figure 1 (b), the compensator angle 
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)pθ θ= −θ  is negative, and the compensator is known as the phase-lag controller   

 
In general, the open-loop transfer function is given by 
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where is the number of finite zeros and is the number of finite poles of the loop 
transfer function. If , there are (

m n
mn m> n − zeros at infinity. The characteristic equation 

of the closed-loop transfer function is 
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From the above expression, it follows that for a point in the -plane to be on the root-
locus, when 0 , it must satisfy the following two conditions. 
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and 
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The magnitude and angle criteria given by (3) and (4) are used in the graphical root-locus 
design. 
 
In addition to the MATLAB control system toolbox rlocus(num, den) for root locus plot, 
MATALB control system toolbox contain the following functions which are useful for 
interactively finding the gain at certain pole locations and intersect with constant nω  
circles. These are: 
 
sgrid generates a grid over an existing continuous s-plane root locus or pole-zero map.  
Lines of constant damping ratioζ and natural frequency nω are drawn. sgrid('new') clears 
the current axes first and sets hold on. 
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sgrid(Z, Wn) plots constant damping and frequency lines for the damping ratios in the 
vector Z and the natural frequencies in the vector Wn. 
  
[K, poles] = rlocfind(num, den)  puts up a crosshair cursor in the graphics window 
which is used to select a pole location on an existing root locus.  The root locus gain 
associated with this point is returned in K and all the system poles for this gain are 
returned in poles.  
 
rltool or sistool opens the SISO Design Tool.  This Graphical User Interface allows you 
to design single-input/single-output (SISO) compensators by interacting with the root 
locus, Bode, and Nichols plots of the open-loop system. 
 
1. Gain Factor Compensation or P-Controller Design 
 
The proportional controller is a pure gain controller. The design is accomplished by 
choosing a value , which results in a satisfactory transient response. The specification 
may be either the step response damping ratio or the step response time constant or the 
steady-state error. The procedure for finding is as follows: 

0K

0K
• Construct an accurate root-locus plot 
• For a given ζ  draw a line from origin at angle 1cosθ ζ−= measured from 

negative real axis. 
• The desired closed-loop pole  is at the intersection of this line and the root-

locus.  
1s

• Estimate the vector lengths from  to poles and zeros and apply the magnitude 
criterion as given by (3) to find . 
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Example 1 
 
The open-loop transfer function of a control system is given by  
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(a) Obtain the gain of a proportional controller such that the damping ratio of the 
closed-loop poles will be equal 0.6. Obtain root-locus, step response and the time-domain 
specifications for the compensated system. 

0K

 
The root-locus plot is shown in Figure 2. For 0.6ζ = , 

1cos 0.6 53.13θ −= =  
The line drawn at this angle intersects the root-locus at approximately, . 
The vector lengths from to the poles are marked on the diagram 

1 0.41 0.56s j− +

1s
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Figure 2 P-Controller Design 

 
. From (1), we have 
 

(0.7)(0.8)(3.65) 2.04K = =  

This gain will result in the velocity error constant of 2.04 0.51
4vK = = .  Thus, the steady-

state error due to a ramp input is 1 1 1.96
0.51ss

v
e

K
= = = .   

The compensated closed-loop transfer function is 
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(b) Use the MATLAB Control System Toolbox functions rlocus and sgrid(zeta, wn) to 
obtain the root-locus and the gain for 0K 0.6ζ = . Also use the ltiview function to obtain 
the system step response and the time-domain specifications. 
 
The following commands 

num=1; 
den=[1 5 4 0]; 
rlocus(num, den); 
hold on 
sgrid(0.6, 1)    % plots constant line zeta=0.6 & constant line wn=1 
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result in 
 

 
Figure 3 

Zoom in at the area of intersection, click at the intersection, hold and move the mouse at 
intersection and adjust for Damping: 0.6. The gain is found to be 2.04. In addition, the 
percentage overshoot and natural frequency are obtained, i.e., 9.48%PO =  and 

0.697nω = . 
To obtain the step response and time-domain specifications, we use the following 
commands.  
 

numc=2.04; 
denc=[1 5 4 2.04]; 
T=tf(numc, denc) 
ltiview('step', T) 
 

The result is shown in Figure 4. Right-click on the LTI Viewer, use Chracteristics to 
mark peak response, peak time, settling time, and rise time. From File Menu use Print to 
Figure to obtain a Figure plot.  
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Figure4 

2. PD Compensator Design 
 
Here both the error and its derivative are used for control 
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From above, it can be seen that the  controller is equivalent to the addition of a simple 
zero at

PD
0 /P DZ K K=  to the open-loop transfer function, which improves the transient 

response. From a different point of view, the PD controller may also be used to improve 
the steady-state error, because it anticipates large errors and attempts corrective action 
before they occur. 
 
The procedure for the graphical root-locus compensator design is as follows: PD

• Construct an accurate root-locus plot 
• From the design specifications; the desired damping ratio and time constant of the 

dominant closed-loop poles, obtain the desired location of the dominant closed-
loop poles. 
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• Mark the poles and zeros of the open-loop plant transfer function. Find the 
location of the compensator zero 0Z  such that the angle criterion as given by (4) 
is satisfied.  

0 1 2 1 2( ) ( ) 180z z z p pθ θ θ θ θ+ + + − + + = −  
• Estimate the vector lengths from  to all poles and zeros and apply the magnitude 

criterion as given by (3) to find
1s

DK . Find PK  from (6) 
 
Example 2 
Consider the control system shown in Figure 5. 
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Figure 5 

 
(a) Assume the compensator is a simple proportional controller , obtain all pertinent 
pints for root locus and draw the root-locus. Determine the location of the dominant poles 
to have critically damped response, and find the time constant corresponding to this 
location. Also determine the value of  and the corresponding time constant for 
dominant poles damping ratio of 0.707. Obtain the compensated system step response. 

K
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(b) G  is a compensator. Design the compensator for the following time-domain 
specifications. 

( )c s PD

 
• Dominant poles damping ratio 0.707ζ =  
• Dominant poles time constant 0.5τ =  second 

 
(a) First we construct the root locus 

• The root-loci on the real axis are to the left of an odd number of finite poles and 
zeros. 

• ,  i.e., there are three zeros at infinity. 3n m− =
• Three asymptotes with angles  and 180 ,θ = 60± . 
• The asymptotes intersect on the real axis at 

finite poles of ( ) finite zeros of ( ) (2 5) 2.33
3a

GH s GH s
n m

σ
− − +

= =
−

∑ ∑ −  

• Breakaway point on the real axis is given by 
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The roots  of this equation are s 3.7863= − , and 0.8804s = − . But  is not 
part of the root-locus for , therefore the breakaway point is at . The 
Routh array gives the location of the 

3.7863s = −
0.8804s = −0K >

jω -axis crossing. 
3

2

1

0

1 10
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         for stability 0 70 and 3.16
70 0

0
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K s j
Ks
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−
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The root-locus is shown in Figure 6. 
 

 
Figure 6 

For the dominant poles to have critically damped response, the dominant poles are at the 
breakaway position A, i.e., . The time constant and the gain are 1 2 0.8804s s= = − K

1 1.136
0.8804

τ = = second 

(0.8804)(1.1296)(4.1196) 4.06K = =  
For dominant poles damping ratio of 0.707,  is at position B. The time constant and the 
gain are 

1s
K

1 1.24
0.8074

τ = =  second 

(1.14)(1.44)(4.3) 7.06K = =  
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(b) The controller design PD
1 1 2

0.5nζω
τ

= = = , and  1(0.707) 45cocθ −= =

Therefore 
  1 2 2s j= − +
The desired location of  requires the root-locus to be shifted towards the left half s-
plane, which requires the addition of zero by the controller as shown in Figure 7. 
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Figure 7 

The position of is found by applying the angle criterion given by (4) 0z

0 0(135 90 33.69) 180          78.69z zθ θ− + + = − ⇒ =  
 

0
2tan 78.69           0.4, and 2.4 P

D

Kx z
x K

= ⇒ = = =  

The compensated open-loop transfer function is  
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The vector lengths from are marked on the diagram as shown. Applying the magnitude 
criterion, we have 
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4.16DK = =  

2.4         24
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P P
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D

K K K
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= = ⇒ =  

Therefore, the controller transfer function is  
( ) 24 10cG s s= +  

We use the following commands to obtain the closed-loop transfer function and the step 
response. 
 

Gp = tf([0 0 1],[1  9  14])  % Plant transfer function 
Gc = tf([10  24],[0  1])  % PD compensator 
GpGc = series(Gp, Gc)  % Open-loop transfer function 
T = feedback(GpGc, 1)  % closed-loop transfer function 
ltiview('step', T)   % obtains the step response 
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The result is shown in Figure 8. 
 

 
Figure 8 Step response for the system of Example 2 

 
3. PI Compensator Design 
 
The integral of the error as well as the error itself is used for control, and the compensator 
transfer function is 
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Integral control bases its corrective action on the cumulative error integrated over time. 
The controller increases the type of system by 1 and is used to eliminate the steady-state 
errors.  
 
Example 3 
 
For the control system shown in Figure 9 design a PI compensator for the following 
specifications: 
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Figure 9 

• Zero steady-state error due to a step input 
• A pair of dominant closed-loop poles with a time constant of 0.25 seconds and a 

damping ratio of 0.8. 
Obtain the compensated system step response. 
 

1 1 4
0.25nζω

τ
= = = , and  1tan (0.8) 36.87θ −= =

Therefore 
  1 14 4* tan 36.87           4 3s j s j= − + ⇒ = − +
The poles of the open-loop transfer function and the controller pole at origin are marked 
in Figure 10.   
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Figure 10 
The position of controller zero for the desired location of  is obtained by applying the 
angle criterion given by (4) 

1s

 
0 0(143.13 108.435 45) 180          116.565z zθ θ− + + = − ⇒ =  

 

0
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x
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The compensated open-loop transfer function is  
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The vector lengths from are marked on the diagram as shown. Applying the magnitude 
criterion, we have 

1s
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11.25PK = =  
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20

I I
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Therefore, the controller transfer function is  
50( ) 20cG s
s

= +  

The PI controller increases the system type from zero to 1. That is, we have a type 1 
system and the steady-state error due to a step input is zero. We use the following 
commands to obtain the closed-loop transfer function and the step response. 
 

Gp = tf([0 0 1],[1  10  21])  % Plant transfer function 
Gc = tf([20  50],[1  0])  % PI compensator 
GpGc = series(Gp, Gc)  % Open-loop transfer function 
T = feedback(GpGc, 1)  % closed-loop transfer function 
ltiview('step', T)   % obtains the step response 

 
The result is shown in Figure 11. 

 
Figure 11 Step response for the system of Example 2 

 
4. PID Compensator 

The PID controller is used to improve the dynamic response as well as to reduce or 
eliminate the steady-state error. With a proportional controller increasing the controller 
gain will reduce the rise time and the steady-state error. However, in systems of third 
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order or higher, large gain will make the system unstable. Derivative action contributes 
phase-lead and will improve the transient response, reducing the overshoot and settling 
time.  The integral action increases the system type by 1 and eliminates the steady-state 
error, but it may make the transient response worse. When you are designing a PID 
controller, first set PK to a large value to produce a fast response without loosing 
stability. Then add derivative gain DK and adjust its value to meet the transient response 
specifications. If required introduce the Integral gain  to eliminate the steady-state 
error. Repeat the design and fine-tune the gains to obtain the desired response. 

IK

5. Phase-Lead Design 

In the phase-lead controller , thus the controller contributes a positive angle to the 
root-locus angle criterion and tends to shift the root-locus of the plant toward the left in 
the s-plane. Since , the compensator is a high-pass filter. The phase-lead 
compensator has the same purpose as the PD compensator. It is utilized to improve the 
transient response, to raise bandwidth and to increase the speed of response. A lead 
compensator approximates derivative control and reduces the high-frequency noise 
present in the PD compensator. The procedure or the graphical root-locus design is as 
follows: 

0z p>

0

0

0p

0z p>

• From the time-domain specifications obtain the desired location of the closed-
loop dominant poles. 

• Select the controller zero. Place the zero to the left of the smallest plant’s pole (or 
on the pole for pole-zero cancellation) 

• Locate the compensator pole so that the angle criterion (3) is satisfied. 
•  Determine the compensator gain  such that the magnitude criterion (4) is 

satisfied. 
cK

• If the overall response rise time, overshoot and settling time is not satisfactory,  
place the controller zero at a different location and repeat the design 

Moving the controller zero to the left away from the origin in the s-plane results in a 
faster response with increase in overshoot. Moving the controller zero to the right 
towards the origin will result in a slow response and reduces or eliminate the overshoot.  
The compensator angle 0zθ θ−  must be positive Therefore, there is a limit on how far 
to the left along the real axis the compensator zero may be moved and still be able to 
satisfy the angle criterion. 

Example 4 

For the control system of Example 2 design a phase lead compensator to meet the 
following time-domain specifications: 

• Dominant poles damping ratio 0.707ζ =  
• Dominant poles time constant 0.5τ =  second 
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1 1 2

0.5nζω
τ

= = = , and  1(0.707) 45cocθ −= =

Therefore 
  1 2 2s j= − +
The desired location of  requires the root-locus to be shifted towards the left half s-
plane, which requires the addition of phase lead controller as shown in Figure 12. 
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                Figure 12
 

Let the controller zero be located at 0 1.75z = . The position of the controller 0p is found 
by applying the angle criterion given by (4) 

1
0 180 tan (2 / 0.25) 97.125θ −= − =  

0 097.125 (135 90 33.69 ) 180          18.435p pθ θ− + + + = − ⇒ =  

0
2tan18.435           6, and 2 6 8x z
x

= ⇒ = = + =  

The compensated open-loop transfer function is  
( 1.75)( ) ( )

( 2)( 5)( 8
c

c
K sG s GH s

s s s s
+

=
+ + + )

 

The vector lengths from are marked on the diagram as shown. Applying the magnitude 
criterion, we have 

1s

( 8)(2)( 13)( 40) 64
4.0625cK = =  

Therefore, the controller transfer function is  
64( 1.75)( )

( 8)c
sG s
s
+
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The controller dc gain is  

 0
(64)(1.75)(0) 14

8ca G= = =  

We use the following commands to obtain the closed-loop transfer function and the step 
response. 

Gp = tf([0 0  0 1],[1  7  10 0])  % Plant transfer function 
Gc = tf(64*[1  1.75],[1  8])   % PI compensator 
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GpGc = series(Gp, Gc)   % Open-loop transfer function 
T = feedback(GpGc, 1)   % closed-loop transfer function 
ltiview('step', T)    % obtains the step response 

 
The result is shown in Figure 13. 

Figure 13 Step response for the system of Example 4. 

 

6. Phase-lag compensator approximate design 

The lag compensator is an approximate integral control. The phase-lag compensator is 
used when the system transient response is satisfactory but requires a reduction in the 
steady-state error. Since 0 0p z< , the compensator is a low-pass filter. It adds a negative 
angle to the angle criterion and tends to shift the root-locus to the right in the s-plane.  
 
In the phase-lag control, the controller poles and zeros are placed very close together, and 
the combination is located relatively close to the origin of the s-plane. Thus, the root-loci 
in the compensated system are shifted only slightly from their original locations. The 
compensator contributes a magnitude of  
 

1 0

1 0

| || ( ) |
| |
c

c c
K s zG s K

s p
+

=
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The gain to satisfy the desired damping ratio is given by 
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0 1 1
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1| ( ) | 1          | ( )|=K GH s GH s
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For the compensated system, the magnitude criterion requires that  
 

1 1
0

1| ( ) || ( ) | 1          1c cK GH s G s K K
K

= ⇒ =  

or 

 0 Gain to satisfy the desired damping ratio
Gain to satisfy the desired steady-state errorc

KK
K

= =    (7) 

For a given desired location of a closed-loop pole s , the design can be accomplished by 
trial and error. The procedure for approximate phase-lag design is as follows: 

1

• Obtain the root-locus and determine the gain  to satisfy the desired damping 
ratio. 

0K

 
• Determine the gain  to satisfy the desired stead-state error. K

 
• Evaluate the controller gain 

0Gain to satisfy the desired damping ratio
Gain to satisfy the desired steady-state errorc

KK
K

= =  

 
• Select the controller zero close to origin. 0z

 

•  Based on the compensator DC gain of unity, 0

0

1cK z
p

= , find the controller pole 

0 0cp K z=   
 
Example 5 
Consider the control system shown in Figure 14. 
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Figure 14 

 
(a) Assume the compensator is a simple proportional controller , obtain all pertinent 
pints for root locus and draw the root-locus. Determine the gain for the step response 
damping ratio of 0.8. Obtain the steady-state error and the system step response. 

K
0K
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• The root-loci on the real axis are to the left of an odd number of finite poles and 
zeros. 

 
• ,  i.e., there are two zeros at infinity. 2n m− =

 
• Two asymptotes with angles 90θ = ± . 
 
• The asymptotes intersect on the real axis at 

      
finite poles of ( ) finite zeros of ( ) (10 30) 20

2a

GH s GH s
n m

σ
− − +

= =
−

∑ ∑ −  

• Breakaway point on the real axis is given by 

      2( 40 300) 0          2 40 0dK d s s s
ds ds

= + + = ⇒ + =  

Therefore the breakaway point is at 20s = − .  
 
The root-locus is shown in Figure 15 

 
Figure 15 

 
For  10.8          cos (0.8) 36.87ζ θ −= ⇒ = =
The intersection of the line drawn from origin at this angle with root locus gives the 
desired complex pole . Applying the magnitude criterion (3), the gain  
is found 

1 20 15s = − + j 0K

0 0130 325 325          2.5K K= ⇒ =  
The position error constant is  
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(130)(2.5) 1.08333
(10)(30)pK = =  

The steady-state error is 

 1 1 0.48
1 1 1.08333ss

p

e
K

= = =
+ +

 

The step response is shown in Figure 16. 

 
Figure 16 The step response for Example 5 (a). 

 
(b) It is required to have approximately the same dominant closed-loop pole locations and 
the same damping ratio ( 0.8ζ = ) as in part (a).  Design a phase-lag compensator such 
that the steady-state error due to a unit step input sse  will be equal to 0.0845. Obtain the 
step response, and the time-domain specifications for the compensated system. 
 
 
 
 
The gain , which results in eK 0.0845ss = is given by 

 1 1300.0845           10.8343
1 (10)(30)ss p

p

Ke K
K

= = ⇒ = =
+

 

 
Thus the gain to realize the steady-state error specification is 25K =  
 
Using the approximate method, the controller gain is given by 
 

Gain to satisfy the desired damping ratio 2.5 0.1
Gain to satisfy the desired steady-state error 25cK = = =  

 
Next choose a small value for the compensator zero, e.g., 1.5z =  
 

 18



Based on the controller dc gain of unity 0 0/cK z p 1= , the controller pole is found 

0 0 (0.1)(1.5) 0.15cp K z= = = . Thus the controller transfer function is 
0.1( 1.5)( )
( 0.15)c

sG s
s

+
=

+
 

and the compensated open-loop transfer function is 
 

3 2

(0.1)( 1.5)(130)(25) 325 478.5( ) ( )
( 0.15)( 10)( 30) 40.15 306 45c

s sG s KG s
s s s s s s

+ +
= =

+ + + + + +
 

 
The compensated closed-loop transfer function is 
 

3 2

( ) 325 478.5
( ) 40.15 631 532.5

C s s
R s s s s

+
=

+ + +
 

 
The compensated characteristic equation roots are 19.63 14.5j− ± , and –0.894. The 
compensated step response is shown in Figure 17. The complex poles are shifted slightly 
to the left from the specified value of 20 15j− ± . 
 

 
Figure 17 The compensated step response for Example 5 (b). 

 
Note that that the complex poles are located approximately in the same location as in part 
(a). The steady-state error is greatly reduced, but because of the addition of the root at –
0.894, the step response rise time and settling time are increased.  If a faster response is 
desired, select the controller zero further to the left away from the origin. This would 
move the complex pole to the right further away from the specified value.  1s
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7. Phase-lead Compensator Analytical Design 
 

The DC gain of the compensator 0

0

( )( )
( )
c

c
K s z

s p
G s +

=
+

 is 

       0
0

0

(0) c
c

K za G
p

= =         (8) 

 
In the analytical design the controller dc gain a  is specified, usually in accordance to the 
steady-state error specification. Then, for a given location of the closed-loop pole  

0

 
1 1| |s s β= ∠ ,  

 
0z , and 0p are obtained such that the equation 

 
1 11 ( ) ( )cG s GH s+ = 0   

 
is satisfied. It can be shown that the above parameters are found from the following 
equations 
 

0
0 0

1 1

1,       ,     and     c
az p K
a b

= = = 0 0

0

a p
z

     (9) 

where 
 

0
1

1

0
1

1

sin sin( )
sin

sin( ) sin
sin

a Ma
s M

a Mb
s

β β ψ
ψ

β ψ
ψ

+ −
=

+ +
= −

β
      (10) 

 
where M and ψ are the magnitude and phase angle of the open-loop plant transfer 
function evaluated at , i.e., 1s
 

1( )GH s M ψ= ∠         (11) 
For the case that ψ  is either 0 or 1 , (10) is given by 80
 

1 1
1 1 0

| | 1cos cos 0b sa s a
M M

β β± ± + =      (12) 

 
where the plus sign applies for 0ψ =  and the minus sign applies for . For this 
case the zero of the compensator must also be assigned. 

180ψ =
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8. PDI Compensator Analytical Design  
 
For a desired location of the closed-loop pole , as given by (3), the following equations 
are obtained to satisfy 

1s

1

2
1 1

2 cossin( )
sin

sin
| | sin | |

I
P

I
D

KK
M s

KK
s M s

ββ ψ
β

ψ
β

− +
= −

= +
     (13) 

 
For PD or PI controllers, the appropriate gain is set to zero. The above equations can be 
used only for the complex pole s . For the case that  is real, the zero of the PD 
controller and the zero of the PI controller (

1 1s

0( /Pz K KD= ) )0 /I Pz K K=  are specified 
and the corresponding gains to satisfy angle and magnitude criteria are obtained 
accordingly. For the PID design, the value of  to achieve a desired steady state error is 
specified. Again, (13) is applied only for the complex pole . 

IK

1s
 
9. GUI program for root-locus compensator design (rldesigngui) 
 
Based on the above equations, a Graphical User Interface program has been developed 
for the design of a first-order controller in the forward path of a closed-loop control 
system for proportional, phase-lag, phase-lead, PD, PI, and PID controllers. The GUI 
program named “rldesigngui”, which has the following options, can invoke these 
programs: 
 
Pushbutton P Controller – This option is used for the design of gain factor 
compensation.  is obtained for the specified damping ratio 0K ζ . 
 
Pushbutton Phase Lag Controller – This option is used for the design of a phase-lag 

controller using the approximated method, 0
c

KK
K

= .  G  is designed for a desired 

damping ratio 

( )c s

ζ  and the gain  required for the steady-state error specification. The user 
must estimate the compensator zero. is selected far away from  and close to origin. 

K

0z 1s
 
Pushbutton Phase Lead Controller – This option is used for the design of a phase-lead 
controller for a desired location of the dominant complex closed loop poles. The DC gain 

of the controller G  must be specified. (0)c
0

0

(0) c
c

K zG
p

=  is found from the steady-state 

error requirement.  
 
Pushbutton PD Controller – This option is used for the design of a PD controller for a 
desired location of the dominant complex closed loop poles.  
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Pushbutton PI Controller – This option is used for the design of a PI controller for a 
desired location of the dominant complex closed loop poles.  
 
Pushbutton PID Controller – This option is used for the design of a PID controller for a 
desired location of the dominant complex closed loop poles. The integral gain  must 
be specified.  

IK

 
For each case the open loop and the closed-loop compensated system transfer functions 
are displayed. Also, the variables Gc (controller transfer function), Tfo (compensated 
open-loop transfer function), and TFc (compensated closed-loop transfer function) are 
sent to the workspace. For each design the pushbutton System Responses can be used to 
obtain the time-domain and frequency-domain responses of the compensated system  
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Example 6 
 
Use the rldesigngui to design a phase-lead controller for the system of Example 2 and 
the design specifications outlined in Example 4.  
 
The open-loop transfer function of Example 2 is  

1( )
( 2)( 5

GH s
s s s

=
+ + )

 

The specification of 0.707ζ = , and 0.5τ =  for dominant closed-loop poles as specified 
in Example 4 resulted in the closed-loop pole location 1 2s 2j= − + .  The analytical 
phase-lead controller design requires the specification of the controller dc gain. This is 
often obtained by specifying the steady-state error. We are going to use the controller dc 
gain obtained in the Example 4, i.e., 0 14a = . 
 
In MATLAB set the Current Directory to the folder where rldesigngui and the related 
files are located. At the MATLAB prompt type  
 
>> rldesigngui 
 
The following graphical window is displayed 
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Enter the plant transfer function numerator and denominator coefficients. Select the 
Phase Lead Controller pushbutton. This opens the phase Lead Controller Design; enter 
the desired closed-loop pole and the controller dc gain.  
 

 
 
Pressing the Find G button, the controller transfer function, the compensated open 
loop and closed-loop transfer function, and the roots of the compensated characteristic 
equation are obtained as shown in the Figure. Pressing the System Responses pushbutton 
will activate the ltiviewer, which enables you to obtain all system response, and their 
characteristics.  

( )c s

 
The phase-lead controller is  

64( 1.75)( )
( 8)c
sG s
s
+

=
+

 

The compensated open-loop transfer function is 
 

4 3 2

64 112( ) ( )
15 66 80c

sG s GH s
s s s s

+
=

+ + +
 

and the closed-loop transfer function is 

4 3 2

( ) 64 112
( ) 15 66 144 112

C s s
R s s s s s

+
=

+ + + +
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The compensated step response is as shown.  
 

 
 
You can use the rldesigngui to design the controllers for the remaining examples. 
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