
EE-371 CONTROL SYSTEMS LABORATORY 
 

Session 4 
Modeling and Digital Simulation Case Studies 

 
Purpose 
 
One of the objectives of this session is to get you acquainted with the basics of 
SIMULINK, which is a graphical modeling, simulation, and prototyping environment 
used extensively in industry. We will not be able to cover the vast capability of 
SIMULINK with few examples, and you are expected to explore various features and 
graphical programming techniques of SIMULINK on your own.   The other objectives of 
this lab are to find the mathematical model for some basic physical systems, to obtain a 
digital simulation diagram for the resulting differential equations, and to obtain the 
system’s step response and investigate the effect of damping on the system response.  
 
Reference Computational Aids in Control Systems Using MATLAB, H. Saadat, 

McGraw-Hill 1993. An updated version is on Saadat’s website for EECS 
students. The password is available from your instructor.  

 
 
Introduction 
 
The dynamic performance of physical systems is obtained by utilizing the related 
physical laws governing the systems. Many dynamic systems contain energy storage 
elements such as masses and springs in the mechanical system, or inductors and 
capacitors in an electric circuit. Because of the principle of conservation of energy, 
instantaneous changes in system variables are not possible. Therefore, the system 
variables will go through some transients before settling to their steady-state values.   
 
All physical systems are nonlinear to some extent. In order to model the system with 
linear time-invariant differential equations for transfer function and state space model, the 
system must first be linearized, or its range of operation be confined to a linear range.  
 
The next step in designing a practical control system is to simulate the model on a 
computer to obtain the system response to various signals and disturbances. Next, 
introduce appropriate controllers to achieve the desired system response. This process of 
design and analysis is repeated until a satisfactory control system is obtained before 
implementing the design on the hardware.  
 
One of the most powerful tools for modeling and simulation of dynamic systems is 
SIMULINK, a toolbox extension of MATLAB. SIMULINK is very easy to learn.  A 
system in block diagram representation is built easily and the simulation results are 
displayed quickly. Simulation algorithms and parameters can be changed in the middle of 
a simulation with intuitive results, thus providing the student with a ready-access learning 
tool for simulating many of the operational problems found in the real world.  
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SIMULINK is particularly useful for studying the effects of nonlinearities on the 
behavior of the system, and as such, it is also an ideal research tool. Simulink has many 
advanced features for simulating a complex control system, such as the creation of the 
new sub-system blocks and masking blocks through M-files, C programs, or SIMULINK 
block diagrams, for easy integration in your system’s model. This allows an extension of 
the SIMULINK graphical functions to suit your own needs of analysis and design. The 
SIMULINK demos and User’s Guide for SIMULINK are very helpful in explaining the 
advanced usage and extension of SIMULINK block library. Also refer to Chapter 1 in 
“Computational Aids in Control Systems Using MATLAB, Hadi Saadat”. Get the 
password to download this supplementary textbook from the author’s personal web page. 
 
Case Study 1 Mechanical Translational System 
 
Consider a simple mechanical system consisting of a mass, a spring and a shock absorber 
known as dashpot or piston shown in Figure 4.1 (a). Where M is the mass, B is the 
frictional coefficient, is the spring constant,K ( )f t  is the external force, ( )x t  the 
displacement and  the velocity. Three forces influence the motion of the mass, 
namely the applied force, the frictional force, and the spring force as shown on the free-
body diagram in Figure 4.1(b) 
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Figure 4.1 (a) Mechanical translational system.       (b) Free-body diagram, 
 
Applying Newton’s law of motion, we have 
 

2

2

( ) ( ) ( ) ( )d x t dx tM B Kx t f
dt dt

+ + = t       (4.1) 

The transfer function model is obtained by taking the Laplace transform, which results in  

2

( ) 1( )
( )

X sG s
F s Ms Bs K

= =
+ +

       (4.2) 

As stated in the lecture for more complicated mechanical systems it is easier to draw the 
electric circuit force-voltage analogy in place of the free-body diagram. In force-voltage 

analogy, mass M is analogous to inductance, spring compliance 1
K

 is analogous to 

capacitance, frictional coefficient B  is analogous to resistance, and velocity is analogous 
to current. The key point in drawing the electric circuit analogy is to identify the 
displacement or velocity of each element and draw the circuit accordingly. The circuit 
can be drawn in the s-domain to find the transfer function or in the time-domain suitable 
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for obtaining the state space model. The electric circuit analogy for this mechanical 
system is shown in Figure 4.2. 
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Figure 4.2 Electric circuit analogy 
 
Applying Kirchhoff’s voltage law, we have  

2 0

( ) ( ) ( ) ( )
tdu tM Bu t K u t f t

dt
+ + =∫  

Since ( )( ) dx tu t
dt

= , we have 

2

2

( ) ( ) ( ) ( )d x t dx tM B Kx t f
dt dt

+ + = t  

 
Which is the same as (4.1). Equation (4.1) can also be written in state space form by 
selecting the two state variables as displacement and velocity, i.e., 1( ) ( )x t x t=  and  

2
( )( ) ( ) dx tx t u t

dt
= = , then 

1
2

2
1 2

( ) ( )

( ) 1 ( ) ( ) ( )

dx t x t
dt

dx t K Bf t x t x
dt M M M

=

= − − t
     (4.3) 

 
and we define the output as the two state variables, namely 1 1( )y x t=  and  2 2

In matrix form, 
( )y x t=

( ) ( ) ( ),  and ( ) ( ) ( )x t Ax t Bu t y t Cx t Du t= + = +& , the state and output 
equations are 

1 1 1

2 2 2

( ) ( ) ( ) ( )0 1 0 1 0
( ),  and  

( ) ( ) ( ) ( )1 0
1

21
x t x t y t

f t
x t

x t x t y tK M B M M
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

&

& x t
⎤
⎥  (4.4) 

 
The simulation diagram for equations in (4.3) is shown in Figure 4.3 
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Figure 4.3 Simulation diagram for the mechanical system. Case study 1 

 
With the system initially at rest, a force of ( ) 32f t = Newton is applied at time . 
Mass 

0t =
2M = Kg, the spring constant 32K = and the frictional coefficient B can be 

adjusted to obtain a desirable response.  
The system characteristic equation given by (4.2) is 

2 0B Ks s
M M

+ + =         (4.5) 

This is the same form as the standard second-order transfer function 
 

2 2 n ns sζω ω+ + 2 0=         (4.6) 
 
1. Perform the following analysis: 
 
(a) The dashpot damping is adjusted to 2B = N-s/m. Determine the natural frequency of 

oscillation nω , damping ratio ζ , 
21e

ζπ

ζ
−

−=. . 100P O × , peak time 
21

p

n

t π
ω ζ

=
−

, and 

settling time 4st τ≅ . 
(b) The dashpot damping is adjusted to 56B = N-s/m. Determine, damping ratio ζ , 
response time constants 1τ  and 2τ , and settling time 1 24 max( , )st τ τ≅ × . 
 
(c) Determine the frictional coefficient B for the response to be critically damped. What 
is the response time constant and approximate settling time? 
 
2. Digital Simulation using SIMULINK 
 
To create a SIMULINK block diagram presentation of the system shown in Figure 4.3 
double click on the SIMULINK icon on the MATLAB toolbar, or type simulink at the 
MATLAB prompt. Click on the create a new model icon on the SIMULINK toolbar. An 
untitled window for designing and simulating a new model will open. Double click on the 
Simulink library icon; this will open nine subsystems libraries. Open the Source Library 
and drag the Step Input block to the open new model window. Double click on the Step 
Input to open its dialog box, set the parameters Step time to 0, and Final value to 32. Get 
two integrators from the Continuous library, three Gain blocks on one Sum block from 
the Math Library, one Scope and one XY Graph from the Sink library, one Mux block 
from Signals and Systems library. Open the Sum block dialog box and enter the required 
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summing point signs +--. Once you have dragged all the required blocks and placed them 
on the new model window, join the in-ports and out-ports to create the simulation model.  
The purpose of Mux block (Multiplex) is to combine the velocity and displacement 
signals into a composite signal so as to display both signals on one Scope. XYGraph is 
used to display the state trajectory, i.e., velocity versus displacement plot. Connect 1x  to 
the first input and 2x  to the second input of the XY Graph.  Open the XY Graph dialog 
box, set the x-axis limits to 0, 2, the y-axis limits to  and Sample time to 0.01. An m-
file named MSFanimation.m has been developed for animating the motion of the mass-
spring-friction system during simulation. To add this animation, get an S-Function block 
form the functions & Tables library, place it on your model window and connect its input 
terminal to the signal coming from the output of the Mux block. Make sure that you have 
obtained MSFanimation.m and InAmin.m files from your instructor and placed it on a 
folder in the current directory. Open the S-Function block for its name enter 
MSFanimation, and for the S-Function parameter enter 0.01. Set the gain blocks to the 
given values and the damping coefficient specified in part (a) above.  

4m

 
Solver page 
Before, starting simulation, you must set the simulation parameters. Pull down the 
Simulation dialog box and select Simulation Parameters. Set the start time to 0 and the 
stop time to a suitable value. For solver option select Variable-step and any of the 
Continuous integration routine such as ode45 or ode23. For more accurate response you 
may change the Relative tolerance from 1e-3 to 1e-5.  If you select Fixed-step, again 
make sure you select a Continuous integration routine such as ode4 (Runge-Kutta). You 
can also change the step size from auto to small value such as 0.0001.  Follow the same 
procedure in the remaining case studies in this lab and make sure the Solver option is not 
set for discrete. 
 
Simulate and obtain a print of the Scope. The scope yellow trace will not print well. Also, 
the Simulink XY Graph cannot be printed. A Script m-file named ‘plotscope’ has been 
developed which captures the scope plot and produces a Figure plot. At the MATLAB 
prompt type 
 
>> plotscope 
then click on the Scope Figure (outside the plot area) and hit return you will have a 
Figure print. You can add label and legend commands or edit the graph. You can use this 
procedure for the XY Graph or the animation plot.  
 
An alternative way to obtain a Figure plot is to place two To Workspace blocks from the 
Sink library and connect their inputs to 1x , and 2x signals, and defining x1 and x2 for the 
variables. The time array can be obtained by feeding a Clock block into another To 
Workspace block and defining a variable t for time. After performing the simulation you 
can use plot function to obtain the desired Figure plot.  
 
Repeat the simulation for the value of B given part (b) and the value determined in part 
(c) above. Document the plots obtained for the above three cases, determine and 
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summarize the time-domain specifications for each case. Comment on the nature of each 
response and discuss the effect of damping coefficient on the resulting response.   
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Figure 4.4 SIMULINK diagram for the mechanical system. Case study 1 

 
Case Study 2 – Simple Pendulum 
 
Consider the simple pendulum illustrated in Figure 4.5 where a mass of kg is hung 
from a hinge by a rigid rod of length l  meters. The rod is light enough that its mass can 
be neglected. The rod is displaced by angle 

m

θ  radians from the equilibrium position.  

mg

l

θ

sinmg θ
 

Figure 4.5 Simple Pendulum 
 
 
Assume a viscous friction for the motion with a damping coefficient of B  Kg-s/m. The 

tangential velocity of the mass is dl
dt
θ . The tangential forces acting to restore the 

pendulum to equilibrium are  
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sin dmg BlTF
dt
θθ= − −   

Where  is the gravitational acceleration. Also from Newton’s law, we have g

 
2dF ml 2T dt
θ

=  

Combining the above equations, we get 
2

sin 0d B d gθ θ θ+ + =    2dt m dt l
    (4.7) 

Equation (4.7) is nonlinear because of the sinθ term. 
 
We can now write the above equation in state variable form. Let 1x θ= , and 

2  x θ= & (angular velocity), then  

1 2

2 2 1

x x

m l

=&
 (4.8) 

The simulation diagram for equations in (4.8) is shown in Figure 4.6 
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Figure 4.6 Simulation diagram for the pendulum. Case study 2 
 

mass m  is displaced from the equilibrium by 0.5 radiansThe  ) at time . 
ass Kg, the rod length is 

( 28.65o  0t =
 m = 0.5 0.613l = m and the gravitational accelerationM  is 9.81 

ictional coef sidered: 

)  Kg-s/m 

rag 
n a n  term, 

2m/s ases of fr. Two c ficient will be con
 

 0.05B =(a
(b) 4.0B = Kg-s/m 
 
Create a SIMULINK block diagram presentation of the system shown in Figure 4.5. D
all the required blocks and place them o ew model window. For the nonlinear
get the Fcn block from the Function & Tables library. Use “u” for the input variable 
name, e.g. 16*sin(u). Specify the gain /B m  and connect all blocks to create the 
simulation model shown in Figure 4.7.  Open the last integrator dialog box and set the 
initial condition to 0.5 for the angular displacement. The initial velocity is zero. 
Therefore, set the Initial condition parameter for the first integrator to 0.  Place one scope 

 display the angle to θ  (signal 1x ) and another scope to display the velocity signal 2x . Us
a XYGraph to display the state trajectory, i.e., velocity versus displacement plot.

e 
 Connect 

 4.7



1x  to the first input and 2x  to the second input. Open the XY Graph dialog box, and set 
the x-axis limits to , 0.5, the y-axis limits to 5− 2− , 2 and Sample time to 0.01.  
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Figure 4.7 SIMULINK diagram for the pendulum. Case study 2 
 
An m-file named PenAnimation.m has been developed for animating the pendulum swing 
during simulation. To add this animation, get a Mux block with two inputs. Connect 1x to
the top inport and 2

 
x  to the lower inport. Next get an S-Function block from the 

Functions & Tables library, place it on the model window and connect its in-port terminal 
to the signal coming from the Mux block. Make sure that you have obtained this m file 

 enter P eter enter 

e
nce, the system is said to be stable. Is the system stable 

from your instructor and placed it on a folder in the path of MATLAB. Open the S-
Function block, for the name enAnimation and for the S-Function param
0.01.  
 
(a) The frictional coefficient 0.05B = Kg-s/m. 
 
Simulate and print the zero-input response (natural response) for the angular 
displacement and state trajectory. You may want to reduce the simulation final time to a 
suitable value. Comm nt on the nature of response. When a system returns to its 
equilibrium point after a disturba
about its equilibrium point 0θ = ? How would you describe the system
damping coefficient 

 stability if the 
B  were neglected?  plotsope Use  to capture the Scope trace and the 

XY Graph. 
 
(b) Repeat for the frictional coefficient 4B = Kg-s/m. 
 
Linearization 
 
Many control systems are designed to return to their equilibrium position w en subjected 

mall distur mall deviation 
quilibrium point. The nonlinear differen tion of 

al angle of deflection is small. 

h
to a s bance. Nonlinear systems are often linearized assuming s
from the e tial equation describing the mo
the pendulum can be linearized if the initi
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Let 0θ θ θ= + Δ , substitute in (4.7) and expand the sine term. For small θΔ  
assumingsin θ θΔ Δ� , cos 1θΔ � , and  0cos 1θ � , show that (4.7) results in the 
linearized differential equation given by  
 

2

2 0
dt m dt l

θ+ + Δ =        (4.9) 

 
This approximation is reasonably accurate for / 4 / 4

d B d gθ θΔ Δ

π θ π− ≤ ≤ .  
 
(c) The state variable equation in terms of the small changes θΔ  and θΔ &  is the same as 
(4.8), except 1in s x  is replaced by 1x . Copy the SIMULINK nonlinear model and paste

me model window, replace the Fnc block with a gain block and set the 
parameter to the value given by /g l . Eliminate the s-function in the duplicate model. In 
order to v

 it 
on the sa

ali e linearized l use a Mux block with two inputs and connect its in-
ports to the 

date th
1

mode
x  signal of

 

 each model and a Scope to its out-port terminal. Simulate for 
0.05B =  in both models and obtain the response. State if the linearized model response is 

in close agreement with the nonlinear model. The characteristic equation of the linearized
model is 

2 0B gs s
m l

d) For the given values of l , and m , find the value of 

+ + =         (4.10) 

B for criticall( y damped response. 

switch, relay, deadzone, backlash, rate
other nonlinear functions. These are very useful for studying the effects of nonlinearities 

study deals with the simulation of a nonlinear 
differential equation. The angular displ

Set the B to this value in both models and repeat the simulation. Comment on the 
response. 
 
Case Study 3 – Nonlinear Differential Equation with Saturation 
 
One of the useful features of SIMULINK is the availability of nonlinear blocks, such as 

-limiter, saturation, Coulomb friction, and many 

on the behavior of the system. This 
acement of a dynamic system is given by 

2

02dt dt
4 sin 30 ( )d d a u tδ δ δ+ + =       (4.11) 

where is a unit st

12) 

and 

( )u t ep input and  

0

0

35.6  for  0
15  for  

c

c

a t t
a t t

= ≤ ≤
= ≤ ≤ ∞

       (4.

δ is constrained as follows 
2 2π δ π− ≤ ≤   

 is a threshold switching time. Where large value of  may result in an unbounded 
       (4.13) 

ct  ct
response.  Transforming to state variable form, let 1x δ= , and 2x δ= & , then 

1 2x x

2 0 1 2sin 4 30 ( )x a
=
= −

&

&
        (4.14) 

x x u t− +

 4.9



 
The SIMULINK diagram for the above system is shown in Figure 4.8. Equation (4.12) is 
represented by the Switch block and equation (4.13) is represented by the Saturation 
block.  

DeltaStep
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1 ( )u t
1
s

Sum

+

−
−

1
s
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30
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15*sin(u)
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0 ct t≤ ≤

ct t≤ ≤ ∞  
 

Figure 4.8 SIMULINK diagram for the Case Study 3. 
 

onstruct the above Simulink diagram, and in Step block set the 

4

Step time to 0, Final 
ters dialog box, set the Stop time to 5 seconds and 

lect ode45. Obtain the response for

C
time to 1. Open the Simulation Parame

 0.4ct = , and 3ct =se seconds. Comment on the 

his fourth study deals with the classic problem of balancing an inverted pendulum. This 
s ems that 

t

anced by eans of a force applied 
to the cart. That is, the cart must be moved in such a way that the pendulum is in upright 
position. In a physical system there would be sensors to measure the position and velocity 
of the cart and the angle 

behavior of the response for each case. 
 
Case Study 4 – Inverted Pendulum 
 
T
study demonstrates the control of an inherently un table system of balancing syst
occurs in the areas of missile stabilization and robotics. This study also demons rates the 
Linearization of a nonlinear system.  
 
Figure 4.9 shows an inverted pendulum of length l  and mass m  supported by a 
frictionless pivot on a cart of mass M. It is to be bal  m u

θ  measured from sition. This is also a model of 
the attitude control of a space booster on takeoff.  

 the vertical po
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Figure 4.9 Inverted Pendulum on a cart. 

 condition is when 

 
This is similar to the balancing of a broomstick on the palm of your hand. The 
equilibrium , and ( )tθ& turns to zero. The visual location of y

stick and the proper movement of your han
( )tθ re our 

hand and the position of the broom d is the 
required feedback without which it is not possible to balance the broomstick. 
 
The differential equations describing the motion of the system are obtained by summing 
the forces on the pendulum, which result in the followi
 

ng nonlinear equations. 

2

2

( ) ( cos ) ( sin )

( cos ) sin

M m x mL mL u

mL x mL mgL

θ θ θ θ

θ θ θ

+ + = +

+ =

&& &&&

&&&&
     (4.15) 

 
 (a) Linearize the above equations in the neighborhood of the zero initial states. Hint: 

ubstitute S θ  for sinθ , 1 for cosθ  and 0 for 2θ& . With the state variables defined as 
1x θ= , 2x θ= & , 3x x= , and 4x x= & , show that the linearized state equation is 

1 1

2 2

3 3

4 4
0 0 0

0 1 0 0 0

0 0 0

0 0 0 1 0
1

x x
M mx xg 1

ML ML ux x

m

⎡ ⎤ ⎡ ⎤⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥ +⎢ ⎥ ⎢ ⎥⎢ ⎥ −
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ = +⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎢ ⎥ − ⎥⎦

&

&

&     (4.16) 

 
 to have all the state variables available as the output, we define the C matrix 

s an identity matrix and D is a 

⎢ ⎥
⎢ ⎥

gx xM M⎢ ⎥ ⎢⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣&

If we want
4 1×a zero matrix 
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1 0 0 0⎡ ⎤ ⎡0

0 0 0 1 0⎣ ⎦

0 1 0 0 0⎢ ⎥ ⎢ ⎥
               D

0
C ⎢ ⎥ ⎢ ⎥= =

⎢ ⎥
     

⎤

⎢ ⎥
⎣ ⎦

 (4.17) 
0 0 1 0⎢ ⎥
⎢ ⎥

 
 
(b) The parameters of the inverted pendulum are 4M =  kg, 0.2m =  kg, 0.5L =  m, a

9.81g =  m/s. In a MATLAB script file define the system parameters and the A, B, C,
matrices.  
 

M = 4;  m = 0.2;  g =9.81;  L =.5; 
A = [ 0  1 0 0   
    (M+m)/(M*L)*g 0 0 0  

                   0  0 0 1 
        -m/M*g  0 0 0]   

B = [0;            -1/(L*M); 0; 1/M],     

nd 
 D 

% Column vector   
C = eye(4),                                                 % Identity matrix 
D = zeros(4, 1)                                            % Column vector 

 x_0 = [0.1  0  0.1  0]; 
 
Save the file as Lab4CS4aData.m  
 
Launch Simulink, open a new model, get the State-Space block from the Continuous 
library and construct the above state model. Double click on the State-Space block to 
open its dialog box and for parameters type A, B, C, and D. Note that MATLAB is case 
sensitive. For the initial condition type, [0.1   0    0.1   0] or x_0. In the Simulation 
Parameters dialog box set Start Time to 0, Stop Time to 3 second. For Solv  option use a 
variable step ls, 
nd use two scopes to displa

er
 size and ode45 algorithm. Connect a Demux block to separate the signa

a yθ  and x . Get an Inport block from the Source library and 
rt block from the Sink library and connect it 

 the signal fo
use it as an input terminal. Also get an Outpo
to r θ  as shown in Figure 4.10. These terminals will enable us to find the 
system transfer function from the Simulink diagram. 
 

x Ax Bu
y Cx Du= +
= +&

Theta

Out 1
2

Demux

State-Space Terminator 2

Terminator 1

 

In 1
1

xDemux
 

Figure 4.10 Simulink block diagram for the Inverted Pendulum. 
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Save the Simulink model as Lab4CS4a.mdl. 
 
Run the script m-file Lab4CS4aData at the MATLAB prompt to calculate the A, B, C, 
and D matrices. These values are now defined and are available in Simulink. Start the 
Simulation in SIMULINK and obtain a plot of θ  and x . Com of the 

 linm  to extract a linear model in state 
ariables or as a transfer function model using the Simulink file name as argument. At the 

n 

You may have found that the angle

ment on the stability 
system. MATLAB provides the function od
v
MATLAB prompt type the following commands to obtain the linearized transfer functio
model, and roots of the characteristic equation. 
 

[num, den]=linmod(‘Lab4CS4a’) 
r = roots(den) 

 
θ  increases without limit, i.e. the response is 

unbounded. Also you may find
again confirms an unbounded response and we say that the system is unstable, that is, the 

.   

) The purpose is to design a control system such that for a small initial disturbance the 
pendulum can be broug

 that a root of the characteristic equation is positive. This 

inverted pendulum will fall over unless a suitable control force via state feedback is used
 
(c

ht back to the vertical position ( 0θ = ), and the cart can be 
brought back to the reference position ( 0x = ).   
 
One approach in modern control systems, accomplished by the use of state feedback, is 
nown as pole-placement design. The pole-placement design allows all roots of the 

system characteristic equation to be placed in desired locations.  This results in a 
regulator with  constant gain vector. In pole-placement design the control is achieved 
by feeding back the state variables through a regulator with constant gains. Consider the 
control system presented in the state-variable form 

k

K

( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +
=

&
       (4.18) 

Consider the block diagram of the system shown in Figure 4.11 with the following state 
feedback control

9) 
here

. 
 

( ) ( )u t Kx t= −         (4.1
 Kw  is a matrix of constant fe

to be zero. The purpose of this system is
1k × edback gain. The control system input is assumed 

 to return all state variables to values of zero 
when the states have been perturbed.  
 

Plant

nK− −

( )u t

2K

1K

Plant
− ( )nx t

1( )x t2 ( )x t
L

( )y t
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Figure 4.11: Control system design via pole placement. 
 
Substituting (4.19) into (4.18), the closed-loop system state-variable representation is 
 

( ) [ ] ( ) ( )fx t A BK x t A x t= − =&       (4.20) 
he design objective is to find tT

th
he gain matrix  such that the characteristic equation for 

e controlled system is identical to the desired characteristic equation. The derivation is 

Af] = p the pole placement design.  A, B, C are 
system esired closed-loop poles.  This 
functio o system matrix Af. Also, the 

ent design. 
er(A B, P) is for single input systems, and function K = place(A, B, 

i it  is f
 
An asp e the custom 
made fu  controller to 
place th

M = 4;  m = 0.2;  g =9.81;  L =.5; 
A = [ 0  1 0 0   
    (M+m)/(M*L)*g 0 0 0  

                   0  0 0 1 
        -m/M*g  0 0 0]   

B = [0;            -1/(L*M); 0; 1/M],     % Column vector   
C = eye(4),                                                 % Identity matrix 
D = zeros(4, 1)                                            % Column vector 
P =[-2+j*.5,  -2-j*.5,  -5,  -4];   
[K, Af] = placepol(A, B, C, P) 

 
Save as Lab4CS4bData.m. In Simulink, open the Lab4CS4a.mdl. Add the state feedbacks 
and set the gains to K(1), K(2), K(3), and K(4) as shown in Figure 4.12.  
 

K

straightforward; refer to “Computational Aids in Control Systems using MATLAB, Hadi 
Saadat, McGraw-Hill 1993, Chapter 8, page 170.”  A custom-made function named [K, 

lacepol(A, B, C, P) is developed for 
 matrices and P is a row vector containing the d
n returns the gain vect r K and the closed-loop 

MATL
Function K = ck , 

AB Control System Toolbox contains two functions for pole-placem
a

p), wh ch uses a more reliable algor hm, or multi-input systems.  

ect of state variable design is state feedback design. In this study us
nction  [K, Af] = placepol(A, B, C, P) and design a state feedback
e closed-loop poles at  

 
[ 1 0.5,  4,   -5]P j= − ± −   

Add the above two statements to the script file Lab4CS4aData4.m as shown below. 
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x Ax Bu
y Cx Du
= +
= +

&
theta
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Figure 4.12 Control of Inverted Pendulum via pole placement. 

 
Run the script file Lab4CS4bData to evaluate the gain matrix K for use in the Simulink. 
Rename the model as Lab4CS4b.mdl. Start the Simulation in SIMULINK and obtain a 
plot of θ  and x , comment on the stability of the system. To see an inverted pendulum 
animation make sure you have obtained the m-file named ‘InvPenAnimation.m’. After 
simulation type InvPenAnimation at the MATLAB prompt. 
 
At the MATLAB prompt type the following commands to obtain the linearized transfer 
function model, and roots of the compensated characteristic equation. 
 

[num, den]=linmod(‘Lab4CS4b’) 
r = roots(den) 

 
Check for the roots of the compensated system. Are they the same as the specified 
values? Is the system stable that is, will the pendulum return to the vertical equilibrium 
position? 
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