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Purpose 
 
The purpose of this session is to introduce the basics of state variable modeling known as 
state-space techniques. The state-space technique is a unified time-domain formulation 
that can be utilized for the analysis and design of linear and nonlinear continuous-time 
and discrete-time multivariable systems. A short tutorial on the Basics of State-variable 
Modeling will be presented in this session. The analytical solution of state equation will 
be covered later in the lecture. Also, in this session few essential MATLAB Functions for 
Modeling and Time-domain Analysis are introduced. After the above introductory 
tutorial you will be able to complete the following two case studies.  
 
Case Study 1  
 
(a) The circuit shown in Figure 3.1 is a third-order Butterworth filter. Select appropriate 
state variables and obtain the state equation and the output equation if the output ( )y t is 
the voltage across R .  
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Figure 3.1 Third-order low-pass filter 

Note:  
• In the absence of all capacitor and voltage source loops and all inductors and 

current source cut-sets, the number of state variables is equal to the number of 
energy storage elements  

• Appropriate state variables are voltage across the capacitors and current in the 
inductors. 

• Write a node-voltage equation for every node touching a capacitor and a loop 
equation in terms of inductor currents for every loop containing an inductor. 

• Write the state equation and the output equation in matrix form, and obtain 
the ,A ,B C , and D matrices.  
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(b) Write a script m-file and use control system toolbox functions ss, and ltiview to form 
the state model and its step response. Also, use ss2tf function to obtain the filter transfer 
function. Run the m-file. Right-click on LTI Viewer and use Characteristics to display all 
the time-domain specifications. From File menu select Print to Figure to obtain an 
editable Figure plot.  Next Right-click on the LTI Viewer and from the Plot Type list, 
select Bode to obtain the Bode plot. Click on magnitude response, hold and drag to 
display the corner frequency at  –3.0 dB point.  Also click on the magnitude response, 
hold and drag to display the attenuation at 10 rad/s.  
 
Summarize the step response characteristics and the filter transfer function. Comment on 
the filter frequency response characteristics.  
 
 
Case Study 2 — Moving-Coil Actuator 
 
Linear and rotary moving-coil actuators are used for a wide variety of applications, such 
as voice coil of loudspeakers, and for applications that require positioning over a small 
range such as hard disk drives head positioning, laser beam mirror actuators, pen plotters, 
and valve operators. 
 
In its simplest form, a linear actuator is a tubular coil of wire placed within a permanent 
magnet with uniform radial magnetic field B  in the annular gap. The moving part has a 
mass M and is assumed to have a viscous friction, which is shown externally by a dashpot 
with frictional coefficient . Also a spring restraining the motion with stiffness  is 
considered as shown in Figure 3.2. The external forces due to the acceleration of mass, 
frictional force and the spring force are acting against the magnetic force to hold the coil 
in equilibrium. Note that
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Figure 3.2 Moving coil actuator for Case Study 2 
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The current is applied to the coil by means of flexible leads. The magnetic field 
produced by the coil current interacts with the magnetic field of the permanent magnet, 
which produces a force on the coil. The resulting force will cause the coil to move in or 
out depending on the direction of current.  

( )i t

 
The Lorentz force law gives the magnitude of force 

 
( ) ( ) ( )ff t Bli t K i t= =         (3.1) 

When the coil is moving perpendicular to field with a velocity , an emf is induced in 
the coil in accordance to Faraday’s law 

( )u t

 

 ( )( ) ( ) ( )e
dx te t Bl Blu t K u t

dt
= = =       (3.2) 

fK  is in Newton/A and  is in V-s/m, their numerical values are the same given by eK

(2 )f eK K Bl B rnπ= = =        (3.3) 
where  is the number of turns of the coil and  is the coil radius.  n r
 
The linear actuator shown has the following parameters: 
 

Supply voltage    4 V dc 
Coil inductance    80 mHL =   
Coil resistance     8 R = Ω .  
Moving coil mass     0.4M = Kg 
Spring stiffness    40 N/mK =  
Frictional coefficient     4.48 N-s/mD =  
Permanent magnet flux density  0.51B = Tesla 
Coil radius      1r =  cm 
Number of turns    50n =  

2(2 ) (0.51)(2 )(1 10 )(50) 1.6 N/AfK B rnπ π −= = × = , and 1.6 V-s/meK =  
 
(a) Write the equation describing the electric circuit. Draw the force-voltage (or force-
current) electric circuit analogy for the mechanical system and write the equation 
describing the mechanical system. Draw the s-domain block diagram for the 
electromagnetic actuator with  as the reference input and the displacement ( )V s ( )X s as 
the output. (Mark all the s-domain variable , ( )V s ( )I s , , , and ( )F s ( )U s ( )E s ( )X s  on 
the block diagram and determine the transfer function ( ) / ( )X s V s . 
 
(b) Use MATLAB roots function to find the roots of the system transfer function and 
determine the time constants. Obtain the electrical time constant /e L Rτ =  and compare 
to the mechanical time constant 1/ 2 /m n M Dτ ζω= = . If eτ  is small compared to mτ , 
suggest a reduced-order model. Obtain the step response for the actual model and the 
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reduced-order model on the same graph. Once you have defined the numerators and 
denominators for both systems, you can use sys3rd = tf(num1, den1), and  
sys2nd = tf(num2, den2) to define the transfer function models. To obtain the step 
response for both systems on the same LTI viewer use the following command 
 

ltiview('step', sys3rd, 'b', sys2nd, 'r') 
Right-click on the plot area and determine the time-domain characteristics, , rt pt , , 
and 

. .P O

st . Also the Bode magnitude plot can be obtained and compared to see that the 
reduced-order model results in a very good match within the system bandwidth. 
 
(c) The step response peak time and the percent overshoot of a second-order system is 
given by 
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Using the above relations compute pt , , and the settling time (. .P O 4st τ ) for the 
reduced-order model and compare to the values for the simulation response found in (b). 
 
It can be shown that for linear actuators used for point-to-point applications with short 
traveling distance, the maximum velocity attained is very small and for low  (V-s/m), 
the back emf may be neglected. For this example in addition to neglecting 

if is neglected, the transfer function with 

eK
( ) ( )ee t K u t=
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